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Abstract
The wealth of information provided by real-time streams of data has paved the way for life-changing techno-
logical advancements, improving the quality of life of people in many ways, from facilitating knowledge ex-
change to self-understanding and self-monitoring. Moreover, the analysis of anonymized and aggregated
large-scale human behavioral data offers new possibilities to understand global patterns of human behavior
and helps decision makers tackle problems of societal importance. In this article, we highlight the potential so-
cietal benefits derived from big data applications with a focus on citizen safety and crime prevention. First, we
introduce the emergent new research area of big data for social good. Next, we detail a case study tackling the
problem of crime hotspot classification, that is, the classification of which areas in a city are more likely to witness
crimes based on past data. In the proposed approach we use demographic information along with human mo-
bility characteristics as derived from anonymized and aggregated mobile network data. The hypothesis that ag-
gregated human behavioral data captured from the mobile network infrastructure, in combination with basic
demographic information, can be used to predict crime is supported by our findings. Our models, built on
and evaluated against real crime data from London, obtain accuracy of almost 70% when classifying whether
a specific area in the city will be a crime hotspot or not in the following month.
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Introduction
The transition of data from being a scarce resource to a
massive and real-time processed stream is rapidly
changing the world we live in, challenging and often
subverting long-lasting paradigms in a broad range
of domains.1 Finance, economics, politics, journalism,
medicine, biology, and physics, to name a few, have
been disrupted by the existence of large amounts of
data. The almost universal adoption of the mobile
phone and the exponential growth of Internet services
has led to the existence of unprecedented amounts of
data about human behavior.

In this context, it is important to differentiate
between two use cases when it comes to big data: (1)

personal data applications, where data of (anonymized)
individuals are analyzed at the individual level to build
computational models of each person to, for example,
provide personalized services or adapt the interaction
(in this use case, privacy, security, transparency, con-
trol, and accountability are key elements that need to
be taken into account), and (2) aggregate data applica-
tions, where aggregated and anonymized data of indi-
viduals are analyzed collectively to be able to make
inferences about large-scale human behavior. In this
scenario, as long as the level of aggregation is suffi-
ciently large, no data can be traced back to any individ-
ual and hence there are minimal—if any—privacy
concerns.
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The work presented in this article falls in the context
of this second use case, and in particular, within the
emergent research area of big data for social good,
that is, the prospect of leveraging big (aggregate) data
to positively affect policy and society.

Although still ‘‘in its intellectual and operational in-
fancy,’’2 the area of big data for social good has gone
through a rapid phase of expansion and maturation in
a short period of time—driven by key research studies
on mapping the propagation of diseases such as malaria3

and H1N1 flu,4 monitoring socioeconomic deprivation,5

predicting human emergency behavior,6 detecting the
impact of natural disasters such as floods,7 and inferring
pollution emissions of vehicles,8 but also driven by non-
academic institutions (e.g., United Nations Global Pulse,
Flowminder.org, Data-Pop Alliance, and DataKind) and
initiatives (e.g., Orange Data for Development, Telefon-
ica Datathon for Social Good, Telecom Italia Big Data
Challenge, and Chicago Data Science for Social Good
Fellowship). A recent report published by UN Global
Pulse9 discussed the challenges and opportunities of
using big data for societal challenges and proposed a
three-tier taxonomy of uses: ‘‘real-time awareness,’’
‘‘early warning,’’ and ‘‘real-time feedback.’’ A subsequent
article on the specific case of big data for conflict pre-
vention distinguished its ‘‘descriptive’’ (i.e., maps), ‘‘pre-
dictive’’ (i.e., either proxying or forecasting), and
‘‘prescriptive’’ (i.e., the realm of causal inference) func-
tions.10 Whereas interest in the latter function is poised
to grow, most applications have relied on the first two—
and perhaps most visibly on the second.

This has notably long been true for counterterror-
ism, intelligence, and law-enforcement activities—
with ‘‘predictive policing’’ systems as near-perfect ex-
amples. Critics of these approaches have pointed to
their inability to tackle root causes and the risks of pro-
filing and harassment they may create, while question-
ing their efficiency.11 Others have argued that curbing
crime preemptively may have lasting structural impacts
on communities plagued by violence.

Crime has not yet been widely covered in the big
data for social good literature, apart from a few exam-
ples.12–15 However, it provides fertile ground to ad-
vance our common understanding of crime and to
validate the power of place-based crime models built
from anonymized and aggregated human behavioral
data with limited to no privacy risks.

In this article, we propose and evaluate a big data ap-
proach to the problem of crime hotspot classification,
that is, the identification, based on past data, of geo-

graphic locations that are likely to become scene of a
crime. In particular, we combine demographics with
anonymized and aggregated people dynamics features,
derived from mobile network activity, in order to clas-
sify whether specific locations are more or less likely to
become crime hotspots in the near future. Note that
none of our data sources can be traced back to make
inferences about individuals.

Crime Hotspots Classification
Crime is a well-known social problem affecting the
quality of life and the economic development of a soci-
ety. Several works have shown that crime tends to be
associated with slower economic growth at both the na-
tional level16 and the local level, such as cities and met-
ropolitan areas.17 Dating back to the beginning of the
20th century, studies have focused on the behavioral
evolution of criminals and its relations with specific
characteristics of the neighborhoods in which they
grew up, lived, and acted. Existing works tend to
mainly explore relationships between criminal activity
and socioeconomic variables such as education,18 eth-
nicity,19 income level,20 and unemployment.20

Urbanists and architects have also investigated the
relationships between people dynamics, urban environ-
ment, and crime.21,22 Urban activist Jane Jacobs21 has
emphasized natural surveillance as a key deterrent for
crime: as people are moving around an area, they will
be ‘‘eyes on the street’’ able to observe what is going
on around them. Hence, Jacobs suggests that high di-
versity among the population and high number of vis-
itors contribute to the safety of a given area and lead to
less crime. On the contrary, Newman’s theory22 argues
that a high mix of people creates the anonymity needed
for crime. Thus, according to the latter, low population
diversity, low visitors ratio, and a high ratio of resi-
dents are the features contributing to an area’s safety.
Several studies have tried to shed light onto these
conflicting theories. Felson and Clarke23 have proposed
the routine activity theory, which investigates how spe-
cific situations and variations in lifestyle affect the op-
portunities for crime. Specifically, they found that some
places such as bars and pubs attract crime.

Criminologists have also started to investigate in de-
tail significant concentrations of crime at microlevels of
geography, regardless of the specific unit of analysis.24

Research has shown that in what are generally seen as
good parts of town there are often streets with strong
crime concentrations, and in what are often defined
as bad neighborhoods, there are locations relatively
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free of crime.24 In 2008, criminologist David Weisburd
proposed to switch the popular people-centric para-
digm of police practices to a place-centric paradigm.25

Based on these findings, we adopt a place-centric and
data-driven approach: specifically we investigate the
power of people dynamics—derived from a combina-
tion of mobile network activity and demographic infor-
mation—to determine whether a specific geographic
area is likely to become a scene of the crime.

Analyzed Datasets
For our case study we exploit datasets provided during
a public competition—the Datathon for Social Good—
organized by Telefonica Digital, The Open Data Insti-
tute, and the MIT Human Dynamics Group. This
Datathon took place in the context of the Campus
Party Europe 2013 at the O2 Arena in London in Sep-
tember 2013.

Participants were provided access to the following
data, among others:

� Anonymized and aggregated human behavioral and
demographics data computed from mobile network
activity and demographics information in the Lon-
don Metropolitan Area. We shall refer to this data-
set as the Smartsteps dataset, because it was derived
from Telefonica’s Smartsteps product.
� Geolocalized open data, a collection of openly

available datasets with varying temporal granular-
ity. This includes reported criminal cases, residen-
tial property sales, transportation, weather, and
London borough profiles related to homelessness,
households, housing market, local government
finance, and societal well-being (a total of 68
metrics).

We turn now to describing the specific datasets that
we used to classify crime hotspots.

Criminal cases dataset
The criminal cases dataset includes the geolocation of
all reported crimes in the United Kingdom but does
not specify their exact date, just the month and year.
The data provided in the public competition included
the criminal cases for December 2012 and January
2013.

The dataset includes the crime ID, the month and year
when the crime was committed, its location (longitude,
latitude, and address where the crime took place), the po-
lice department involved, the lower layer super output
area (LSOA) code, the LSOA name, and the crime type

out of 11 possible types (antisocial behavior, burglary, vi-
olent crime, shoplifting, etc.).

LSOAs are small geographical areas (mean popula-
tion of 1,500 and minimum population threshold of
1,000) defined by the United Kingdom Office for
National Statistics following the 2001 census. Their
aim here is to define areas, based on population levels,
whose boundaries would not change over time.

Smartsteps dataset
The Smartsteps dataset consists of a geographic division
of the London Metropolitan Area into cells whose pre-
cise location (latitude and longitude) and surface area
were provided. Note that the actual shape of the cell
was not provided. In total, there were 124,119 cells.
For each of the Smartsteps cells, a variety of demo-
graphic variables were provided, computed every hour
for a 3-week period, from December 9th to 15th,
2012, and from December 23rd, 2012, to January 5th,
2013. In particular,

1. Footfall, or the estimated number of people within
each cell. This estimation is derived from the mo-
bile network activity by aggregating every hour the
total number of unique phone calls in each cell
tower, mapping the cell tower coverage areas to
the Smartsteps cells, and extrapolating to the gen-
eral population—by taking into account the mar-
ket share of the network in each cell location.

2. An estimation of gender, age, and home/work/
visitor group splits. That is, for each Smartsteps
cell and for each hour, the dataset contains an esti-
mation of how many people are in the cell; the per-
centage of these people who are at home, at work,
or just visiting the cell; and their gender and age
splits in the following brackets: 0–20 years, 21–30
years, 31–40 years, etc., as shown in Table 1. This
information is not directly available from the activ-
ity in the phone network infrastructure but was
provided by GFK, a market research firm.

London borough profiles dataset
The London borough profiles dataset is an official open
dataset containing 68 different metrics about the popu-
lation of a particular geographic area. The spatial gran-
ularity of the borough profiles data is at the LSOA level.

The information includes statistics about the popu-
lation, households (census), demographics (proportion
of population aged 0–15 in 2011, proportion of work-
ing age population in 2011, proportion of population
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aged 65 or over in 2011, etc.), migrant population (e.g.,
proportion of largest, second largest, and third largest
migrant population by country of birth in 2011), eth-
nicity (e.g., proportion of population from black,
Asian, and minority ethnic groups), language (e.g., pro-
portion of people aged 3+ whose main language is not
English), employment (e.g., female, male, and total em-
ployment rate in 2012), NEET (Not in Education,
Employment, and Training) people, benefits (e.g., pro-
portion of the working age population who claim out
work benefits in 2012), qualifications (e.g., proportion
of the working age population with no qualifications
in 2012), earnings (e.g., male, female, and general
gross annual pay in 2012), volunteering, jobs density,
business survival, crime, fires, house prices, new homes,
tenure, greenspace, recycling, carbon emissions, cars
(e.g., number of cars and number of cars per household
in 2011), indices of multiple deprivation, General Cer-
tificate of Secondary Education (GCSE) results, chil-
dren in out-of-work families, life expectancy, teenage
conceptions, happiness levels, political control (e.g.,
proportion of seats won by Labour, LibDem, and Con-
servatives), and election turnout.

Classifying Crime Levels
We cast the problem of crime hotspot classification as a
binary classification task. For each Smartsteps cell, we
classify whether it will show a high or low crime level
in the next month. In order to do this, we use Smart-
steps features computed on December data and crime
ground-truth observations from January. The formula-
tion of the problem as a binary classification task is
driven by several motivations. First, an important ad-
vantage of dichotomizing the ground-truth variable is

that it greatly simplifies the presentation of the results
so to be easily understandable to a wide audience.
This is the reason why, often, dichotomization is used
in criminology studies—where one of the goals is to
present results to policy makers and police depart-
ments.26,27 Second, given the fixed and finite resources
available, policy makers and police departments are
mainly interested in having a simple tool to decide
where to allocate ‘‘more’’ versus ‘‘less’’ resources while
leaving the quantification of these resources to the de-
cision maker. Finally, dichotomizing a continuous var-
iable, and in particular dichotomizing using the median
split, is statistically convenient when dealing with
highly skewed distributions.28 As depicted in Figure
1, the majority of Smartsteps cells in our dataset have
few crimes (e.g., only 1 crime event), while in a small
proportion of the cells a high number of crimes is ob-
served. The spatial distribution of the criminal cases for
the month of January is summarized in Table 2. Given
the high skewness of the distribution (skewness = 5.88,
kurtosis = 72.5, mean = 8.2, median = 5), we split the
criminal dataset with respect to its median into two
classes: a low crime (class ‘‘0’’) when the number of
crimes in the given cell was less or equal to the median,
and a high crime (class ‘‘1’’) when the number of crimes

Table 1. Smartsteps data provided by the challenge
organizers

Type Data

Origin based Total no. of people
No. of residents
No. of workers
No. of visitors

Gender based No. of males
No. of females

Age based No. of people aged up to 20
No. of people aged 21–30
No. of people aged 31–40
No. of people aged 41–50
No. of people aged 51–60
No. of people aged over 60

All the demographic variables refer to 1 h intervals and to each Smart-
steps cell.

FIG. 1. Spatial distribution of crime events.

Table 2. Number of crime cases in January

Min. Q1 Median Mean Q3 Max.

1 2 5 8.2 10 289
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in a given cell was larger than the median. Hence, a
crime hotspot is a cell with a number of crimes strictly
higher than the median value of crimes for that partic-
ular month (hence, labeled as high crime). Following
the empirical distribution, the two resulting classes
are approximately balanced (53.15% for the high-
crime class).

The separation among training and testing sets is
done spatially, with 80% of the cells used for training
and 20% of the cells used for testing. It is worth to
note that no classification of past labels based on fu-
ture Smartsteps data is possible since Smartsteps fea-
tures are computed from December data, while crime
ground-truth labels are computed exclusively for Janu-
ary. In the following subsections we provide details of
the experimental setup that we followed.

Referencing geotagged data to Smartsteps cells
As the Smartsteps cell IDs, the borough profiles,
and the crime event locations are not spatially linked
in the provided datasets and we did not have access
to the actual shape of the Smartsteps cells, we first
georeferenced each crime event by identifying the
Smartsteps cell centroid closest to the location of the
crime. We carried out a similar process for the borough
profiles dataset. As a result, each crime event and the
borough profile information were linked to one of the
Smartsteps cells. In order to accomplish this, we imple-
mented the approximation Algorithm 1 (see Fig. 2).
Accounting for the curvature of the earth, we intro-
duced Algorithm 2 (see Fig. 3) to calculate the direct
spatial distance, given the Federation Aeronautique
Internationale Earth model, such that the Earth is trea-
ted as a three-dimensional ellipse, defined by two radii,
a major axis (the radius at the equator), and a minor
axis (the radius at the poles). The major axis is set to
a constant equal to 6371.009 km.

Feature extraction
Diversity and regularity have been shown to be impor-
tant in the characterization of different facets of human
behavior. In particular, the concept of entropy29 has
been applied to assess the socioeconomic characteris-
tics of places and cities,5 the predictability of mobility,30

and spending patterns.31 Hence, for each Smartsteps
variable (see Table 1), we computed the mathematical
functions that characterize its distribution and infor-
mation theoretic properties, for example, mean, me-
dian, standard deviation, min and max values, and
Shannon entropy.29

Furthermore, in order to be able to also account for
temporal relationships within the Smartsteps data, the
same computations described above were repeated on
sliding windows of variable length (1 h, 4 h, and 1
day), producing second-order features that help reduce
computational complexity and the feature space itself,
while preserving useful data properties.

FIG. 2. Algorithm 1: Approximating closest
Telefonica’s output area centroid for each crime
event.

FIG. 3. Algorithm 2: Estimating direct distance.
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Conversely, no data preprocessing was needed for
the London borough profiles. Hence, we used the orig-
inal 68 London borough profile features.

Feature selection
One of our goals is to provide a comparison between
our approach—based on Smartsteps data—against a
traditional one—based on borough profiles data.
Hence, we decided to limit the number of features
used by our model to 68, to match the maximum num-
ber of borough profiles variables that we were granted
access to. Moreover, the limitation of the number of fea-
tures reduces training times and enhances generaliza-
tion performance by reducing the risk of overfitting.32

To this end, a feature subset selection step was per-
formed following a bootstrap aggregating (bagging)
procedure and using exclusively data from the training
set. Bagging is a machine learning procedure, wherein
predictors are constructed using bootstrapped samples
from the training set and then aggregated to form
a ‘‘bagged predictor.’’ Each bootstrapped sample is
formed using a dropout strategy, leaving out 1/3 of
the training examples. These left-out examples are
used to form accurate estimates of important measure-
ments for local optimization decisions (e.g., to give bet-
ter estimates of node probabilities and node error rates
in decision trees).

The metric used for feature ranking was the mean
decrease in the Gini coefficient of inequality.33 This
choice was motivated because it outperformed other

metrics such as mutual information, information
gain, and chi-square statistic.33

The Gini coefficient ranges between 0, expressing
perfect equality (all dimensions have the same predic-
tive power) and 1, expressing maximal inequality in
predictive power. The feature with maximum mean de-
crease in Gini coefficient is expected to have the maxi-
mum influence in minimizing the out-of-the-bag error,
namely, the misclassification error rate that is estimated
on the dropped-out samples during the bagging proce-
dure. It is known in the literature that minimizing the
out-of-the-bag error results in maximizing common
performance metrics used to evaluate models.34

The top 20 features selected by the model are in-
cluded in Table 3.

Model building
Classification was performed by means of Random
Forests (RF) ensemble classifiers.35 We chose RF be-
cause they satisfy the max-margin property, they do
not require parameter tuning, and, more importantly,
they do not require the specification of a feature-
space, as support vector machines (SVMs) do through
the kernels. Moreover, RF are one of the most accurate
learning algorithms available.36,37 We ran the same ex-
periments described below also by using SVMs with
linear and RBF kernels and we obtained less stable
and less accurate results on both training and testing
sets. Hence, we report the performance results only
for the best model, which was based on RF.

Table 3. Top 20 selected features ranked by mean in decrease accuracy

Base feature Temporal resolution 1st order 2nd order 0 1
Mean decrease

accuracy
Mean

decrease gini

Age >60 Daily Entropy.empirical Entropy.empirical 4.48 5.43 9.02 18.75
At home Daily Mean SD 3.20 7.60 8.91 27.13
Age <20 Daily SD Entropy.empirical 5.69 3.97 8.85 16.88
Age <20 Daily Mean Entropy.empirical 3.09 5.88 8.85 17.26
Age <20 Daily Mean SD 4.50 5.27 8.65 16.03
At home Daily Min Entropy.empirical 6.39 2.32 8.61 15.99
At home Daily SD SD 3.22 8.58 8.60 45.82
At home Daily SD Mean 3.35 5.83 8.57 24.93
Age >60 Daily Entropy.empirical SD 4.62 4.95 8.56 20.45
At home Daily SD Median 5.41 5.04 8.50 26.48
Age 31–40 Daily Entropy.empirical Max 2.33 5.79 8.44 16.24
Age 31–40 Daily Min SD 6.81 4.06 8.31 36.52
At home Daily Min SD 4.36 6.85 8.29 34.26
At home Daily SD Max 4.13 6.87 8.27 34.89
At home Monthly Max — 3.92 5.42 8.26 29.86
At home Monthly SD — 4.43 4.17 8.21 39.70
Age 51–60 Daily Entropy.empirical Entropy.empirical 4.74 4.11 8.13 16.64
Age <20 Daily SD SD 3.67 5.88 8.12 16.86
At home Daily Entropy.empirical Entropy.empirical 5.13 4.82 8.08 18.55
At home Daily Max SD 2.83 6.29 8.07 26.85
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Decision trees are an intuitive method to tackle clas-
sification and regression problems. In the case of binary
classification, a tree assigns features by creating a con-
trol structure on a feature middle point for a decision of
splitting either left or right through nodes of the tree
depending on the value of a given point of the variable.
A binary tree, by definition, ensures that each case of
independent variable is assigned to a unique terminal
node. The value of the terminal node is a predicted out-
come and defines the classification decision. That
means that the decision rule is a path down the tree
to its terminal node. The decision boundary is esti-
mated by an ensemble set of decision rules. The RF al-
gorithm produces a combination of trees, such that
each one is dependent on the values of a random vector
sampled independently with the same distribution for
all the classification trees in the forest.35 We took ad-
vantage of the well-known performance improvements
that are obtained by growing an ensemble of trees and
voting for the most frequent class. Random vectors
were generated before the growth of each tree in the en-
semble, and a random selection without replacement
was performed.35

Experimental Results
In this section we report the experimental results
obtained by the RF trained on different subsets of the
selected features and always tested on the test set,
which was not used during the training phase in any
way.

The performance metrics used to evaluate our ap-
proach are (1) accuracy, (2) F1 score, the harmonic
mean between precision, and recall, and (3) area
under the ROC (AUC) score.38,39

In order to understand the value added by the
Smartsteps data, we compared the performance of the
RF35 using all features (Smarsteps + borough) with (1)
a baseline majority classifier, which always returns
the majority class (‘‘high crime’’) as its prediction (ac-
curacy = 53.15%), and with two additional models
trained with (2) only the subset of selected features
derived from the borough profiles dataset (borough-
only), and (3) only the subset of selected features
derived from the Smartsteps dataset (Smartsteps-only).

Table 4 reports accuracy, F1 score, and the AUC metric
for each of the models. First, the Smartsteps + borough
and the Smartsteps models significantly outperform the
baseline majority classifier, with an increase of about
15% of accuracy.

Interestingly, the addition of the borough profiles fea-
tures does not yield any significant improvement to the
Smartsteps-only model (Smartsteps + borough model
accuracy = 68.83 vs. Smartsteps-only model accura-
cy = 68.04). Moreover, the borough-only model yields a
competitive but significantly lower accuracy than the
Smartsteps model: 62.18%, more than 6% lower than
the accuracies obtained with the Smartsteps-only model
(68.37%) and with the Smartsteps + borough models
(68.83%) while using the same number of variables.

In Table 4 we also report the F1 score for each
model. This metric is the harmonic mean of the preci-
sion (the number of correct positive results divided by
the number of all positive results) and the recall (the
number of correct positive results divided by the num-
ber of positive results that should have been returned),
where an F1 score reaches its best value at 1 and worst
score at 0.38,39

Looking more in detail the performances of the dif-
ferent models on the ‘‘high crime’’ class, we focus on
the true-positive rate, namely, the proportion of actual
high-crime cells that are correctly identified, and on
the true-negative rate, namely, the proportion of ac-
tual low-crime cells that are correctly identified. The
Smartsteps-only and Smartsteps + borough models ob-
tain a good true-positive rate performance of 74.20%
and 73.90%, respectively. Instead, the only-borough
model reaches a true-positive rate of 68.81%, over 5%
less than the models based on Smartsteps data.

When looking at the true-negative rate perfor-
mances, all the models obtain a worse performance:
63.07% for Smartsteps + borough, 61.06% for only-
Smartsteps, and 54.66% for only-borough. Interest-
ingly, our approach obtains a true-positive rate about
10% higher than the true-negative rate. Thus, our ap-
proach is performing better in correctly identifying
high-crime cells. It is worth emphasizing that, in our
scenario, it is more relevant to obtain good results on
the ‘‘high crime’’ class: in fact, mistakenly assigning
‘‘high crime’’ to a cell is less dangerous, from a social

Table 4. Metrics comparison

Model Accuracy
Accuracy,

95% CI F1 score AUC

Smartsteps + borough
profiles

68.83 0.67, 0.70 68.52 0.63

Smartsteps 68.04 0.66, 0.69 67.66 0.63
Borough profiles 62.18 0.60, 0.64 61.72 0.58
Majority Classifiers

(Baseline)
53.15 0.53, 0.53 0 0.50

AUC, area under the ROC.
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policy perspective, than erroneously classifying it as
‘‘low crime’’ when indeed it is ‘‘high crime.’’ As the re-
sults show, our proposed approach brings significant
advantages for the task of hotspot prediction.

For detailed analyses, Tables 5–7 report the confusion
matrices of the only-borough model, the only-Smartsteps
model, and the Smartsteps + borough model, respectively.

Finally, a visual comparison of the ROC curves for
each of the models is provided in Figure 4.

Discussion and Implications
The results discussed in the previous section show that
human behavioral and demographic data (at a daily
and monthly scale) significantly improves the predic-
tion accuracy when compared to using rich statistical
data about a borough’s population (households census,
demographics, ethnicity, employment, etc.). The bor-
ough profiles data provides a fairly detailed view of
the living conditions of a particular area in a city, yet
this data is expensive and time-consuming to collect.
Hence, this type of data is typically updated with low
frequency (e.g., every few years), making difficult the
observation of potential changes.

Human behavioral data derived from mobile net-
work activity combined with demographics, though
less comprehensive than borough profiles, provides sig-
nificantly finer temporal and spatial resolution.

Next, we focus on the most relevant predictors of
crime level taking a look at the top 20 variables in
our model, which are sorted by their mean reduction
in accuracy in Table 3. The Smartsteps features have
more predictive power than official statistics coming
from borough profiles: no features listed in the top 20
are obtained using borough profiles.

Moreover, higher-level features extracted over a se-
quence of days from variables encoding the daily dy-
namics have more predictive power than features
extracted on a monthly basis. This finding points out
at the importance of capturing the temporal dynamics
of a geographical area in order to predict its levels of
crime.

Interestingly, features derived from the percentage of
people in a certain cell who are at home both at a daily
and monthly basis seem to be of extreme importance.
In fact, 11 of the top 20 features are related to the at
home variable. Newman’s approach of ‘‘defensible
space’’22 postulates the relevance of a high number of
residents in an area to reduce crime. The predictive
power of home variables seems to confirm their rele-
vance. However, we found positive associations be-
tween the home variables and crime. Hence, our
findings do not support Newman’s thesis,22 suggesting

Table 5. Confusion matrix for the only-borough model

Actual

0 1

Predicted
0 786 509
1 652 1123

Table 6. Confusion matrix for the only-Smartsteps model

Actual

0 1

Predicted
0 878 421
1 560 1211

Table 7. Confusion matrix for the Smartsteps + borough
model

Actual

0 1

Predicted
0 907 426
1 531 1206

FIG. 4. ROC curves for Smartsteps + borough,
only-Smartsteps, and only-borough profiles.
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that an increased ratio of residents is linked to less
crime and higher urban safety. Similar results were
found in recent work done by Traunmueller et al.15

In their work, the researchers focus only on testing
some hypotheses about people dynamics and crime
using correlational analyses between footfall counts
recorded by the mobile network activity and crime ac-
tivities.

It is also interesting to note the role played by the un-
predictability of the variables, captured by Shannon en-
tropy features.29 The entropy-based features in fact
seem useful for predicting the crime level of places (8
features out of the top 20 are entropy-based features).
In our study, the Shannon entropy captures the pre-
dictable structure of a place in terms of the types of
people that are in that area over the course of a day.
A place with high entropy would have a lot of variety
in the types of people visiting it on a daily basis,
whereas a place with low entropy would be character-
ized by regular patterns over time. In this case, the
daily unpredictability in patterns related to different
age groups, different use (home vs. work), and different
genders seems to be a good predictor for the crime level
in a given area. In line with our results, Traunmueller
et al.15 found significant negative correlations between
areas with higher age diversity and crime. Both our
findings and those of Traunmueller et al.15 support
Jacobs’s theory21 of natural surveillance that high di-
versity of functions in an area and high diversity of
people (gender diversity and age diversity) act as
‘‘eyes on the street’’ decreasing the number of crimes.

Interestingly, Eagle et al.5 found that Shannon en-
tropy used to capture the social and spatial diversity
of communication ties within an individual’s social
network was strongly and positively correlated with
economic development. Hence, high-diversity areas
seem to emerge as more safe and more economically
developed.

Our proposed approach could have clear practical
implications by informing police departments and
city governments on how and where to invest their ef-
forts and on how to react to criminal events with
quicker response times. From a proactive perspective,
the ability to predict the safety of a geographical area
may provide information on explanatory variables
that can be used to identify underlying causes of
these crime occurrence areas and hence enable officers
to intervene in very narrowly defined geographic areas.

The distinctive characteristic of our approach lies in
the use of features computed from aggregated and ano-

nymized mobile network activity data in combination
with some demographic information. Previous re-
search efforts in criminology have tackled similar prob-
lems using background historical knowledge about
crime events in specific areas,40,41 criminals’ profiling,42

or wide description of areas using socioeconomic and
demographic indicators.43 Our findings provide evi-
dence that aggregated and anonymized data collected
by the mobile infrastructure, combined with demo-
graphic information, contains relevant information to
describe a geographical area in order to classify its
crime level.

The first advantage of our approach is its predictive
ability. Our method classifies crime level using vari-
ables that capture the dynamics and characteristics of
the demographics and nature of a place rather than
only making extrapolations from previous crime histo-
ries. Operationally, this means that the proposed model
could be used to classify new crime occurrence areas
that are of similar nature to other well-known occur-
rence areas.

Even though the newly predicted areas may not have
seen recent crimes, if they are similar enough to prior
ones, they could be considered to be high-risk areas
to monitor closely. This is an important advantage
given that in some areas people are less inclined to re-
port crimes.44 Moreover, our approach provides new
ways of describing geographical areas. Recently, some
criminologists have started to use risk terrain model-
ing45 to identify geographic features that contribute
to crime risk, for example, the presence of liquor stores,
certain types of major stores, and bars. Our approach
can identify novel risk-inducing or risk-reducing fea-
tures of geographical areas. In particular, the features
used in our approach are dynamic and related to
human activities.

Further, as suggested in the Introduction section,
this study is relevant to two related debates that will
shape to a great extent the future expansion and matu-
ration of big data for social good as an intellectual and
operational field: first, on the differences and comple-
mentarities between the predictive and prescriptive
uses of big data, and, second, about the potential
trade-offs between short- and medium- to long-term
policy interventions.

By design, predictive approaches are not meant to
identify and thus address the complex processes that
contribute to criminal behaviors in human societies.
However, they can, as in the case of our study, shed in-
teresting light on correlates of crime that are not out of
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the reach of public policies and community-based pro-
grams (e.g., specific people dynamics and characteris-
tics of places). Unveiling such correlates may inform
subsequent academic research and policy pilots that
may lead to crime reduction in the long run (e.g.,
crime prevention through environmental design46).
In other words, insights from predictive models may
inform prescriptive approaches (and vice versa).

In addition, short-term effects can have, cumula-
tively, structural impacts. In the area of conflict preven-
tion, for example, ‘‘operational’’ (or direct) prevention
efforts in general and ‘‘preventive diplomacy’’ in partic-
ular have been increasingly recognized as critical to
longer-term ‘‘strategic’’ interventions intended to ad-
dress the root causes of conflicts—economic, political,
etc. One argument is that short-term, targeted inter-
ventions that avoid conflict escalations allow sociopo-
litical adjustment mechanisms to take place, gradually
gearing societies away from oscillations around various
stages of violence.47 Community-based early warning
systems of conflict have also been found to be more ef-
ficient than their previous top-down counterparts,48

and it remains to be seen whether and how ‘‘at-risk’’
communities could be empowered to make the most
of big data for social good to reduce crime.

Note that the case study described in the article
suffers from a number of limitations due to the con-
straints of the datasets used. First of all, we had ac-
cess only to 3 weeks of Smartsteps data collected
between December 2012 and the first week of January
2013. In addition, the crime data provided was aggre-
gated on a monthly basis. As previous studies have
shown, different crime types follow different temporal
patterns.49 Furthermore, having access to crime events
aggregated on a weekly, daily, or hourly basis would
enable us to validate the described approach with
finer time granularity, predicting crime in the next
week, day, or hour. Finally, the human behavioral
data used in this study is derived from the mobile net-
work infrastructure of a mobile operator. There are
many other sources of human behavioral data that
could also be included in our analysis (e.g., geotagged
social media and public transport logs) and that
could add complementary and valuable information
for the task at hand. We leave this exploration to future
work.

However, despite these limitations, the proposed
approach illustrates the value of large-scale human dy-
namics data—which is actually available in an existing
product (Smartsteps)—to classify crime levels.
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