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Executive summary 

1. What is the overall context and message of this report?  
Scores of recent events have revealed the vulnerability of poor communities to natural hazards such 
as earthquakes, storms, and epidemics while less well-publicized longer-term hazards, such as 
desertification or threats to staple food sources, can have even more devastating effects. Several 
factors are expected to raise disaster risk in developing countries over the next few decades. Higher 
urban densities and larger coastal settlements for example will increase the size of vulnerable 
populations and assets exposed to hazards in developing countries, while climate change will in all 
likelihood increase the frequency and intensity of hydrometeorological hazards in varying, complex 
ways that are expected to only worsen the situation.  This confluence of factors has led to increasing 
calls to make disaster risk reduction a core development concern, as well as to promote an 
understanding that disaster risk reduction is a development investment. 

This growing emphasis on increasing resilience has occurred since about the end of the last decade 
at roughly the same time as the emergence of ‘Big Data’. We conceptualize Big Data not just as large 
datasets, some of which have been used for decades in climatology, but as a new socio-technological 
phenomenon resulting from the emergence and development of an ecosystem made up of the new 
kinds of data ‘crumbs’ about human behaviours and beliefs generated and collected by digital 
devices and services, ever more powerful computing power and analytics tools, and a vibrant 
community of actors in this field.  

This report explores the opportunities, challenges and required steps for leveraging this new 
ecosystem of Big Data to monitor and detect hazards, mitigate their effects, and assist in relief 
efforts. Ultimately the goal is to build resilience so that vulnerable communities and countries as 
complex human ecosystems not only ‘bounce back’ but also learn to adapt to maintain equilibrium 
in the face of natural hazards.  

An overall conclusion is that Big Data for resilience, as with nearly everything with Big Data, is still 
“in its intellectual and operational infancy”1; most existing applications are small pilots, few formal 
evaluations exist, and much of the field consists of studies from the grey and white literature, case 
studies, and reports from NGOs, humanitarian organizations, and private companies. But based on 
the evidence available so far, Big Data does show real value and potential as a force for increasing 
social resilience, provided it is approached and promoted not merely as yet another technological fix.  

Generally speaking, and particularly in disaster-prone regions, we find that Big Data can have four 
main roles or functions: 

1. Descriptive, involves narrative or early detection such as using data from satellite imagery to 
identify flooded areas or identifying areas in need from crisis maps; 

2. Predictive, includes what has been called ‘now-casting’ - to make real-time inferences on 
population distribution based on cell-phone activity before, during or after a shock, for 
example – as well as forecasting sudden and slow onset hazards; 

3. Prescriptive (or diagnostic), goes beyond description and inferences to establish and make 
recommendations on the basis of causal relations, for instance by identifying the effects of 
agricultural diversification on resilience; 

4. Discursive (or engagement), concerns spurring and shaping dialogue within and between 
communities and with key stakeholders about the needs and resources of vulnerable 
populations such as crowdsourcing maps to assist disaster relief efforts; 
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The key stakeholders in this ecosystem who would have the ability to take small pilots to scale are 
numerous – private firms including telecoms and information technology companies, natural and 
social scientists, donors or investors, and a plethora of government agencies at all levels. However, 
no structures have been established to bring together these core stakeholders. Rather than 
collaborating to scale up pilot programs into sustainable systems, they generally continue to work in 
silos on projects driven by specific available technologies rather than by the needs and knowledge of 
at-risk communities.  

Our research did find many examples of isolated experiments using specific technologies in response 
to specific events but virtually no insight on how to scale and connect these experiments. Our 
recommendations therefore focus on the need for investments and mechanisms to improve 
coordination among actors and technologies to realize the promise of Big Data in building resilience, 
tackle both ‘single event’ resilience and ‘general purpose’ resilience with the critical role of social 
learning, and above all place at-risk individuals and communities at the centre of these efforts to 
ensure their context-appropriateness and sustainability. 

2. How can Big Data help? Learning from existing applications 
It goes without saying—but it is worth restating—that Big Data is not a panacea. It is one potential 
force for increasing social resilience to disasters. The use of Big Data to build resilience generally 
falls into one of five categories throughout the disaster cycle, which rely on the four functions of Big 
Data described above. These five categories are: 

1. Monitoring hazards. Seismographs, satellites, and drones offer ever-improving remote 
sensing capabilities. Adding vibration data from citizens’ smartphones or information from 
their Twitter feeds offers tremendous potential for monitoring such hazards as earthquakes 
and floods. 

2. Assessing exposure and vulnerability to hazards. Satellite images enable experts to 
identify geographical and infrastructure risks. Crowdsourcing initiatives like the 
OpenStreetMap project empower volunteers to add ground-level data that are useful notably 
for verification purposes. Call detail records – phone metadata tracking numbers and times 
of calls– have been used to estimate population distribution and socioeconomic status in 
places as diverse as the U.K. and Rwanda. 

3. Guiding disaster response. Social media can be monitored to provide early warning on 
threats ranging from disease outbreaks to food insecurity. Remote sensing has been used to 
provide early assessment of damage caused by hurricanes and earthquakes. Mobile phone 
data provide precious information on population movements and behavioural response after 
a disaster. 

4. Assessing the resilience of natural systems. Satellite images revealing changes in, for 
example, soil quality or water availability have been used to inform agricultural 
interventions in developing countries. Citizen science reporting via social media and 
other platforms can radically expand scientists' observations of ecological systems. 

5. Engagement of communities. Building long-term resilience takes more than 
enhancing the ability of both external and local actors to react to single events. Resilient 
communities manage their natural systems, strengthen their infrastructure, and maintain 
the social ties and networks that make communities strong. The longer-term potential 
of Big Data lies in its capacity to raise citizens’ awareness and empower them to take 
action. Decisions that facilitate or hinder this capacity are fundamentally political ones. 

The full report provides numerous examples of such applications. 
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3. What are some of the key barriers, gaps and risks?  
Despite some promising results, there are barriers, gaps and risks associated with the application and 
use of Big Data in supporting resilience in developing countries. Many of these challenges are similar 
to those that have emerged in related areas– notably in the ICT for Development (ICT4D)2 and 
Participatory GIS (PGIS)3 field. This includes for example, human and institutional capacity gaps 
and lack of access to internet and IT infrastructure. 

Big Data also comes with specific technological, political, and economic hurdles to implementing 
and scaling new approaches as well as new risks. For example, cell-phone data's usefulness is 
currently hampered by factors ranging from the large size of data sets to be analysed to uncertainties 
surrounding individual and group privacy risk. Social media analyses that work well in upper and 
middle income countries may falter in poorer countries with much thinner and more skewed user 
bases.  

These are essentially the same well-documented problems that affect Big Data for development and 
policymaking purposes generally. But leveraging Big Data in often highly complex and volatile 
environments adds to the need to be especially mindful of these factors when attempting to leverage 
it to build resilience:  

1. Constraints on data access and completeness. For all the talk about the ‘data deluge’, 
most Big Data sets are in the hands – or, rather, on the servers – of private corporations, 
and as of yet no comprehensive frameworks and principles for data sharing exist. The tools 
to gather and process these data also tend to be difficult to use and expensive. 

2. Analytical challenges to actionability and replicability. Big Data sets and streams face 
issues of reliability and representativeness that may hamper internal and external validities of 
findings derived from their analysis. Approaches to mitigate these effects such as verification 
techniques and sample bias correction methods have been or are being developed.  

3. Human and technological capacity gaps. At present the capacity to gather and analyse 
data, as well as the ability to integrate it into policy making and programming are still largely 
lacking – especially among the institutions of the Global South. As stated by Claire Melamed 
of ODI and Data-Pop Alliance, “the explosion of big data has far-outpaced our ability 
to make sense of it in poorer nations that already lack human and technical 
capacity.”  

4. Bottlenecks in effective coordination, communication and self-organization. The 
knowledge people need to inform risk assessment, preparedness and response efforts come 
from many sources that are rarely coordinated and socio-cultural and psychological factors 
are too often ignored, notably the need to build knowledge and exchange networks rather 
than provide information products. 

5. Ethical and political risks and considerations. The potential for unethical or even 
dangerous use of Big Data grows exponentially in developing countries and there is an 
urgent need for developing ethical guidelines rooted in the long history of ethics in social 
science and medical research. Participation must be voluntary, users’ data must be protected, 
and the needs of people without access to technology must be addressed. 

Much of the return to investing in Big Data thus revolves around simply facilitating the management 
and use of existing data, or in simply increasing the likelihood that data known to be useful are being 
gathered and prepared before the next disaster hits. 
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4. What could a feasible roadmap entail and achieve?  
The proven or potential benefits of Big Data has not yet translated into a clear roadmap indicating 
practical ways to build disaster resilience on the scale necessary to counter the risks faced by the 
world’s most vulnerable. Remedying this gap requires investments in Big Data technologies, in the 
communities that support and use these technologies, and in the future of the field.  

Within these three main areas, this report identifies the following 12 priorities:  

Invest in Big Data technologies 

Many cutting-edge technologies have huge potential but need to be tested and refined in the field to 
scale-up. 

1. Get early warning systems and risk maps into the hands of the people who can use 
them. Techniques to process crisis data from satellite images and the Internet already exist. 
Human-centred design and wide dissemination would make these models more useful. 

2. Invest in basic forms of existing applications that have high returns, such as social 
media, mobile call record data, and crowdsourced approaches that combine machine and 
human computing.  

3. Identify high value-add contexts. An example of a high value-add context is vulnerable 
populations in middle-income countries that are experiencing the greatest increase in disaster 
risk and, simultaneously, rapid growth in cell and social media technology. 

4. Facilitate the proper management and use of existing Big Data resources by 
developing data sharing guidelines and common standards and designing innovative models 
and partnerships to enable rapid release of crisis data. 

5. Shift to an integrated “data portfolio” approach. The most promising uses of Big Data 
combine data from a variety of sources. The effectiveness of resilience strategies will be 
shaped by the value of the data portfolio as a whole, not by individual technologies. 

Invest in Big Data communities 

Societal learning and a shared understanding of risks and opportunities are important components 
of resilience. The people, as much as the technology, drive the success of Big Data innovations. To 
build resilience, investments should focus on: 

6. Facilitating coordination among stakeholders by, for example, fostering regional data 
ecosystems around key actors and activities to link grassroots groups and start-ups with large 
corporations, organizations and agencies. 

7. Spurring dialogue on ethics and privacy with and between public officials and civil 
society organizations to understand and address privacy and other political and legal risks; 

8. Promoting and incentivizing private sector involvement, via the organization of data 
challenges and promotion of financial and in-kind support to local start-ups and 
organizations; 

9. Spurring data literacy. Big Data for resilience should not be left to experts only; a major 
requirement is to enhance people’s willingness and ability to engage with and via Big Data to 
shape the future of the field. 
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Invest in the future of the field 

The field of Big Data for resilience is young but growing rapidly. Investments in its future can have 
big payoffs for developing communities and the humanitarians who serve them. Steps should be 
taken to: 

10. Facilitate feedback in the disaster response community. Simple mechanisms can be 
used, for example, to enable researchers and humanitarian agencies to share new knowledge 
and best practices. 

11. Tap mobile phone data more fully and rapidly. Mobile phones are a critical technology 
entry point for people in developing countries, but the data infrastructure and processing 
capability lag behind. 

12. Synchronize Big Data sources. Basic data from mobile call data records could be 
combined with social media and Internet data to inform policy by, for example, providing 
updated demographic data for risk assessments. 

Much of the return on investment in the use of Big Data for resilience revolves around simply 
managing and using existing data before the next disaster hits.  
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Introduction 
Natural hazards pose major risks to developing countries. Long-standing patterns of economic 
development expose poorer communities to more natural hazards and leave them less resilient than 
developed countries when hazards do occur.4 The resulting disasters take more lives and lead to 
more damage.5 Furthermore, growing evidence indicates that natural disasters leave difficult-to-
observe indirect damages that can affect development outcomes ranging from economic growth to 
individual and community health.6 

Several factors are expected to increase disaster risk in developing countries over the next few 
decades. Higher urban densities, larger coastal settlements, and increased investment are all expected 
to increase the number of people and assets exposed to hazards in developing countries. Climate 
change is increasing the frequency and intensity of weather-related hazards in varying, complex ways 
that can only be expected to worsen the situation.7 This confluence of risk factors has led to 
increasing calls to make disaster risk reduction a core development concern8 and position it as a 
development investment.9 Several—close to 30 by our estimates—of the agreed 169 targets of the 
Sustainable Development Goals (SDGs) agenda 10 11 relate, directly or indirectly, to disaster risk 
reduction and increased resilience (see Table 1). 

This growing emphasis on increasing resilience has occurred roughly at the same time as the 
emergence, since the end of the 2000s, of ‘Big Data’, which we conceptualize as an ecosystem made 
up of three factors: digital data from sources as diverse as satellites and mobile phones, the capacity 
to analyse and use that data, and the people who produce, analyse, and/or use the data (see Box 1). 
Big Data has opened up promising approaches to disaster resilience. Mobile phone data, for 
example, can provide an incredibly detailed view of population behaviour and movement in areas 
that were previously observed infrequently and indirectly. Social networks like Twitter are already 
improving the ability of humanitarian and disaster risk reduction organizations to monitor and 
respond to hazards. Further, opportunities are increasing as mobile phone penetration and access to 
internet, for example, are increasing significantly in developing countries. Over the 10 years there is 
likely to be an explosion of new data. 

At the same time, leveraging and scaling Big Data 
approaches to increasing resilience requires navigating and 
linking highly complex technological, political, and 
socieconomic systems. On a basic level, the possibilities of 
using mobile phone data is hampered by factors ranging 
from access to the data, the size of the data, and privacy 
concerns. Methods of mining social network data that work 
well in upper- and middle-income countries are less 
adequate in poorer countries with thinner user bases. The 
limitations and requirements are multiple, making advanced 
assessment of the promise of various methods difficult 
even for specialists. 

This synthesis report sheds light on this rapidly changing area by highlighting the growing body of 
empirical work that explores ways in which Big Data has been used to increase resilience.  

 

 

‘The explosion of big data 
has far outpaced our ability 

to make sense of it in 
poorer nations that already 
lack human and technical 

capacity.’  

—Claire Melamed 
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Box 1. Key Terms and Concepts at a Glance 

• (Natural) hazard 
A sudden or slow-onset natural event or process that may cause harm to humans or other 
organisms. Examples are floods, drought, earthquake, desertification, landslide, epidemic, and 
locust invasion. 

• (Natural) Disaster 
As distinct from a hazard, a disaster consists of the combination of a natural hazard and its 
effect on the population and assets.  

• Vulnerability 
The characteristics and circumstances of a community or asset that make it susceptible to the 
damaging effects of a hazard. 

• Exposure 
The actual extent to which assets or populations are likely to experience a given set of hazards 
over time. Exposure plus vulnerability equals disaster risk. 

• Risk 
The combination of the probability of an event and its negative consequences. 

• Impact 
The sum of the consequences if the risk does occur. 

• Resilience 
The ability of a system or community to resist, absorb, accommodate, and recover from the 
effects of a hazard, including preservation and restoration of essential structures and functions. 

• Big Data 

An ecosystem made up of the combination of three factors: digital data from sources as diverse 
as satellites and mobile phones, the capacity to analyse and use that data, and the people who 
produce, analyse, and/or use the data. The concept of Big Data goes well beyond the datasets 
themselves—regardless of their size. 

 

This report is organized as follows. The first section outlines the key concepts (see Box 1) and 
questions at stake. The next two sections draw from the academic and ‘grey’ literatures and from a 
set of case studies specifically commissioned for this project by the UK Department for 
International Development (DfID), the project sponsor, with NERC and ESRC. Section 2 provides 
an analysis of the potential of Big Data to increase resilience. Section 3 outlines the many pitfalls 
involved in transitioning from understanding to action. A constant theme is the extremely early stage 
of the field.  
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Table 1: Sustainable Development Goals and selected targets related to resilience 

Goals Selected targets 
Goal 1. End poverty in all its forms everywhere Target 1.5 - By 2030 build the resilience of the poor and those in 

vulnerable situations, and reduce their exposure and vulnerability to 
climate-related extreme events and other economic, social and 
environmental shocks and disasters 

Goal 2. End hunger, achieve food security and 
improved nutrition, and promote sustainable 
agriculture 

Target 2.4 - By 2030 ensure sustainable food production systems and 
implement resilient agricultural practices that increase productivity and 
production, that help maintain ecosystems, that strengthen capacity for 
adaptation to climate change, extreme weather, drought, flooding and 
other disasters (…) 

Goal 3. Ensure healthy lives and promote well-
being for all at all ages 

Target 3.8 - Achieve universal health coverage (UHC), including financial 
risk protection (…) 

Goal 4. Ensure inclusive and equitable quality 
education and promote life-long learning 
opportunities for all 

Target 4.7 - By 2030 ensure all learners acquire knowledge and skills 
needed to promote sustainable development (…) 

Goal 5. Achieve gender equality and empower all 
women and girls 

Target 5.5 - Ensure women’s full and effective participation and equal 
opportunities for leadership at all levels of decision-making in political, 
economic, and public life 

Goal 6. Ensure availability and sustainable 
management of water and sanitation for all 

Target 6.6 - By 2020 protect and restore water-related ecosystems, 
including mountains, forests, wetlands, rivers, aquifers and lakes 

Goal 7. Ensure access to affordable, reliable, 
sustainable, and modern energy for all 

Target 7.1 - By 2030 ensure universal access to affordable, reliable, and 
modern energy services 

Goal 8. Promote sustained, inclusive and 
sustainable economic growth, full and productive 
employment and decent work for all 

Target 8.2 - Achieve higher levels of productivity of economies through 
diversification, technological upgrading and innovation, including 
through a focus on high value added and labour-intensive sectors 

Goal 9. Build resilient infrastructure, promote 
inclusive and sustainable industrialization and 
foster innovation 

Target 9.1 - Develop quality, reliable, sustainable and resilient 
infrastructure (…) 

Goal 10. Reduce inequality within and among 
countries 

Target 10.2 - By 2030 empower and promote the social, economic and 
political inclusion of all (…) 

Goal 11. Make cities and human settlements 
inclusive, safe, resilient and sustainable 

Target 11.5 - By 2030, significantly reduce the number of deaths and the 
number of people affected and substantially decrease the direct economic 
losses relative to global gross domestic product caused by disasters, 
including water-related disasters, with a focus on protecting the poor and 
people in vulnerable situations 

Goal 12. Ensure sustainable consumption and 
production patterns 

Target 12.8  - By 2030 ensure that people everywhere have the relevant 
information and awareness for sustainable development and lifestyles in 
harmony with nature 

Goal 13. Take urgent action to combat climate 
change and its impacts 

Target 13.1 - Strengthen resilience and adaptive capacity to climate related 
hazards and natural disasters in all countries and Target 13.3 - Improve 
education, awareness raising and human and institutional capacity on 
climate change mitigation, adaptation, impact reduction, and early 
warning 

Goal 14. Conserve and sustainably use the oceans, 
seas and marine resources for sustainable 
development 

Target 14.3 - Minimize and address the impacts of ocean acidification, 
including through enhanced scientific cooperation at all levels 

Goal 15. Protect, restore and promote sustainable 
use of terrestrial ecosystems, sustainably manage 
forests, combat desertification, and halt and 
reverse land degradation and halt biodiversity loss 

Target 15.3 - By 2020, combat desertification, and restore degraded land 
and soil, including land affected by desertification, drought and floods, 
and strive to achieve a land-degradation neutral world 
 

Goal 16. Promote peaceful and inclusive societies 
for sustainable development, provide access to 
justice for all and build effective, accountable and 
inclusive institutions at all levels 

Target 16.7 - Ensure responsive, inclusive, participatory and 
representative decision-making at all levels 
 

Goal 17. Strengthen the means of implementation 
and revitalize the global partnership for 
sustainable development 

Target 17.18 - By 2020, enhance capacity building support to developing 
countries (…) to increase significantly the availability of high-quality, 
timely and reliable data (…) 
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The report concludes with specific recommendations for operationalizing Big Data approaches to 
increase resilience, identifying both promising areas where Big Data adds value and the many 
practical hurdles to implementation. The capacity to gather, analyse, and use data is still largely 
lacking, especially in the Global South. The biggest returns on investment in Big Data thus involve 
managing and using data that already exist or ensuring that the kinds of data already known to be 
useful are being gathered before the next disaster hits.  

Big Data is not a panacea. It is one potential force for increasing social resilience to disasters. Strong 
investment in Big Data and resilience is necessary to ‘fully integrate statistics into decision making 
[and] promote open access to, and use of, data’, according to the U.N. High-Level Panel report on 
the post-2015 agenda. This report highlights the need to invest in people and institutional capacities, 
make governance of technologies more open and transparent, and place attempts to strengthen 
resilience using Big Data under a cohesive and participatory framework. Building more adaptable 
societies and investing in effective long-term solutions is more complex than simply developing an 
app or performing an analysis.  

1. Setting the stage and stakes 
This section outlines key contexts, concepts, and questions necessary to understand the potentials 
and pitfalls of Big Data approaches to resilience. 

1.1 Hazards, disasters, vulnerability and resilience in developing contexts 

Disaster risk management and response have long been core humanitarian concerns. However, 
recent decades have seen substantial advances in our understanding of how natural hazards become 
deadly and costly disasters. The key is to recognize that the social impact of a disaster is a product of 
the interaction between natural hazards and vulnerable human communities (Figure 1). Disaster risk 
thus depends on a variety of social factors ranging from population density to urban planning to 
disaster warning and response systems. Improving a society’s ability to withstand disasters requires 
greatly improved risk management. It requires changes in the many social variables that increase 
resilience. 

Resilience is the sum of the many factors and processes that can reduce vulnerability defined as “the 
susceptibility of [a] system or any of its constituents to harmful external pressures”12, or simply the “propensity for 
loss” 13 . Whereas in most of the policy and social science literature and discourse, resilience is 
understood as the (considered normatively desirable) capacity of a social system to ‘bounce back’, in 
the ecological science where it was first developed the concept rather describes a system’s ability to 
"maintain structure and function" while ‘bouncing back’ would be closer to a system’s robustness.14 As 
such, and fundamentally, a distinctive feature of a resilient system is adaptability.  
Improved warning systems that enable populations to better respond to risk information, 
earthquake-resistant architecture, and disaster drills could all be expected to increase resilience. So 
would more subtle factors such as effective health systems and well functioning social networks.  

In some cases, technical fixes may reduce system vulnerability in the short term, but increase it in the 
long term. For example, relying on groundwater may increase resilience to droughts in the short run 
but make more people more vulnerable to severe damage when groundwater reserves are depleted. 
Assessing a system’s resilience requires consideration of possible unforeseen consequences of 
current actions in the larger context. Ultimately, societal learning is the key to building the flexibility 
that makes systems resilient.  

 

The relationship between resilience and development is not simple. As populations become richer, 
their ability to respond and adapt improves due to increased income and access to technology, but 
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so does exposure of vulnerable assets and populations, for example, in densely packed cities. Climate 
change further complicates this scenario by increasing the likelihood of extreme events in uneven 
patterns around the world.  

Figure 1. Disasters and resilience 

 
Source: elaborated by the authors  

1.2 What is Big Data? 

The term ‘Big Data’ has come into wide use as an umbrella term for both the new technologies that 
generate large-scale data on social outcomes (see Table 2) and the opportunities those data 
engender. Unfortunately, Big Data too often continues to be reduced to ‘big data’ characterised by 
the volume, velocity, and variety of the data, which overlooks most of Big Data’s novelty and 
complexity. Instead, Big Data must be conceptualized as a new socio-technological phenomenon 
resulting from the emergence and development of an ecosystem made up of the new kinds of data 
‘crumbs’ about behaviours and beliefs generated and collected by digital devices and services, ever 
more powerful computing power and analytics tools, and a vibrant community of actors in this field.  

Following a previously developed framework,15 this report conceptualizes Big Data as the complex 
social system created by the emergence of ‘the 3 Cs of Big Data’: 
• Digital bread crumbs16: pieces of data that are the digital translation of human actions and 

interactions captured by digital devices17, the majority of which are passively18 emitted by users 
of digital devices and services. These fall under 3 main categories of ‘Exhaust data’, ‘Digital 
content’, and ‘Sensing data’19 (see Table 2) 

• Big Data capacities or analytics: the set of tools and methods, hardware and software, and 
know-how and skills necessary to process and analyse these new kinds of data. The tools and 
methods include visualization techniques, statistical machine learning, algorithms, and the like. 

• Big Data communities: the actors involved in the Big Data ecosystem, from the generators of 
data to their analysts and end users – potentially the whole population.   

Hazard
Exposure

Vulnerable	
Population

Re
sil
ie
nc
e Resilience

A	disaster’s ultimate	impact depends	on	multiple	factors,	both	natural	and	human.

A	natural	hazard	has	the	potential	to	impact	any	population	exposed	to	it.	The	more	vulnerable the	
population,	the	greater	potential	for	that	hazard	to	cause	harm,	resulting	in	a	disaster.

Resilience	represents	society’s	ability	to	mitigate	natural	hazards’	impacts	on	vulnerable	populations,	
through	improving	monitoring,	reducing	vulnerability,	assessing	impacts,	and	facilitating	recovery.

Disaster	Impacts
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Table 2. Taxonomy and Examples of Big Data Sources 

 

Types Examples Opportunities 

Category 1: Exhaust data 

Mobile-based Call Details Records (CDRs) 
GPS (Fleet tracking, Bus AVL) 

Estimate population 
distribution and 

socioeconomic status in 
places as diverse as the U.K. 

and Rwanda 

Financial 
transactions 

Electronic ID 
E-licenses (e.g. insurance) 

Transportation cards (including airplane 
fidelity cards) 

Credit/debit cards 

Provide critical information 
on population movements 
and behavioural response 

after a disaster 

Transportation GPS (Fleet tracking, Bus AVL) 
EZ passes 

Provide early assessment of 
damage caused by hurricanes 

and earthquakes 

Online traces Cookies 
IP addresses 

Mitigate impacts of infectious 
diseases through more timely 
monitoring using access logs 
from the online encyclopedia 

Wikipedia 

Category 2: Digital Content 

Social media 

Tweets (Twitter API) 
Check-ins (Foursquare) 

Facebook content 
YouTube videos 

Provide early warning on 
threats ranging from disease 
outbreaks to food insecurity 

Crowd-sourced/ 
online content 

Mapping (Open Street Map, Google 
Maps, Yelp) 

Monitoring/ Reporting (uReport) 

Empower volunteers to add 
ground-level data that are 

useful notably for verification 
purpose 

Category 3: Sensing data 

Physical 
Smart meters 

Speed/weight trackers 
USGS seismometers 

Sensors have been used to 
assess the demand for using 
sensors to estimate demand 

for high efficiency cook-
stoves at different price 

points in Uganda or 
willingness to pay for 

chlorine dispensers in Kenya 

Remote 
Satellite imagery (NASA TRMM, 

LandSat) 
Unmanned Aerial Vehicles (UAVs) 

Satellite images revealing 
changes in, for example, soil 
quality or water availability 
have been used to inform 

agricultural interventions in 
developing countries 
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Together, these three parts form a complex system in which feedback loops in data generation, use, 
and assessment produce new data and techniques. At the most basic level, organizations generate 
new kinds of data that lead to the development of new kinds of analytical tools, and then various 
actors interact with those tools.  

Despite the high potential for use of Big Data to improve global well being, implementation of Big 
Data initiatives raises a number of concerns in both the private and public sectors.  

• Most Big Data investment has been made by the private sector, and corporations own much of 
the data. Although corporations have a legitimate right to act in their commercial interests, the 
privacy and rights of citizens and organizations must be protected.  

• Technical and legal data sharing frameworks that would facilitate use of private corporations’ 
data in the public interest do not currently exist. The concept of data philanthropy is being 
promoted to foster data sharing; corporate social responsibility can also be a driver.  

• Government institutions generally lack both the IT infrastructure to collect and analyse Big Data 
and the financial resources to invest in technology development. They also often do not have the 
resources to distribute available data or foster interoperability among datasets.  

• Most government organizations need to build the capacities of their staff and incentivize data 
sharing across departments and units.  

• Governments also face challenges in establishing regulatory frameworks and work procedures to 
respect the privacy of citizens and organizations while handling their data. 

1.3 How can Big Data increase resilience? 

The value of Big Data for disaster and climate resilience lies in the insights that can be gained from 
combining data crumbs with enhanced capacities or analytics. There are four main types of analytics for 
resilience:  

• Descriptive analytics is concerned with describing situations and critical concerns, for 
example, assessing damages from a disaster or combining satellite imagery and social media data 
for early detection of a flood. 

• Predictive analytics involves making inferences about unobservable or difficult-to-measure 
concerns. For example, changes in call frequency, movements of mobile phones and mobile 
recharges (‘top-ups’) have been used to assess mobility and interaction patterns in response to 
disasters. Predictive analytics is also concerned with what may happen in the future. For 
example, Big Data is central to enabling granular, early, and accurate weather forecasts and can 
increasingly predict both sudden and slow-onset disasters. 

• Prescriptive analytics goes beyond description and inferences to examine likely futures by 
identifying causal pathways. For example, to identify the most promising policies, analysts might 
explore multiple likely forecasts or run predictive analyses under different policy scenarios. 
Another prescriptive application is ‘behaviour nudging’, in which individuals’ data are used in 
personalized reports on, for example, their energy consumption or exposure to health risks. 

• Discursive analytics generates value for resilience through the third C, communities. Using Big 
Data for community engagement includes raising awareness about disaster risks and providing 
real-time feedback to enhance response and community-led preparedness. 
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The role of Big Data in enhancing society’s ability to avoid disasters and improve resilience is 
primarily a long-term one. It follows an action cycle with three main components: prevention or 
mitigation, monitoring or prediction, and response or recovery.20  
Big Data can help with prevention or mitigation by helping communities to map hazards and to 
characterize their exposure and vulnerability. For example, analysis of patterns from mobile data and 
online content can help policymakers understand the behaviour of communities and test their 
response to emergency plans and training. 

Big Data also has potential to improve monitoring or prediction. In case of an earthquake or volcano, for 
example, crowdsourced hazard detection techniques can enlist citizens to provide information by 
sending pictures of the volcano’s activity. Other techniques involve mining user-generated content 
on hazards, such as social media posts, or aggregating data produced by a variety of sensors. For 
example, the motion detectors built into mobile phones can help with seismic detection.  

Big Data also allows better response and recovery efforts. Sensing data generated by electronic devices 
and information posted on social networks can be used to channel search and rescue activities. 
Online communities can help develop maps of affected areas or match requests for help with offers 
of assistance. Satellite and drone images can facilitate quick, large-scale assessment of the impact of a 
disaster by comparing pre- and post- event images of damaged buildings and infrastructure. When 
the focus shifts from response to recovery, Big Data can help local communities return to normal. 
For example, analysts can identify areas whose recovery is lagging behind through polls via mobile 
networks or social media mining. Volumes of digital transactions or data on supply chains before 
and after a disaster can improve understanding of the interaction between humanitarian assistance 
and local systems. 

1.4 Key actors and activities   

Currently, the main players in the field of Big Data for resilience are mix of development agencies, 
governmental agencies, local and international non-governmental organizations (NGOs), public and 
private donors, private companies, philanthropic foundations and academic initiatives.  

Various United Nations agencies have begun experimenting with using Big Data methods and tools 
to build resilience. The UN Global Pulse consists of a network of innovation labs established in 
New York, Jakarta, and Kampala, where experts from the UN, governments, academia, and the 
private sector collaborate on research and projects on Big Data for development.21 

The UN Development Programme (UNDP) is also active in Big Data for resilience. The UNDP 
regional office in Europe and Central Asia piloted the application of data science techniques to 
identify socioeconomic vulnerabilities and organized a ‘data dive’ in Vienna22 to improve poverty 
mapping. The UNDP office in China established a laboratory in partnership with a local internet 
services company to experiment with using Big Data to support development goals. 23  Other 
promising Big Data work is being done by UNDP branches in Macedonia, 24  Armenia, 25  and 
Kosovo.26  

Another UN agency, the Office for the Coordination of Humanitarian Affairs, in late 2014 set up a 
data lab in Kenya and released the Humanitarian Data Exchange,27 an open platform to promote 
humanitarian data sharing, automation, and interoperability. More than 40 organizations joined the 
platform, which was tested during the Ebola outbreak in West Africa and the earthquake in Nepal. 
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In the non-profit non-governmental sector, the Rockefeller Foundation notably is supporting 
studies and applications in the field. Its 100 Resilient Cities initiative is aimed at strengthening the 
resilience of 100 urban areas worldwide not only against disasters but also against stresses that can 
undermine a city’s stability, such as unemployment. Flowminder Foundation (which developed a 
case study reviewed in this report) is a registered non-profit entity supporting NGOs and 
governments in leveraging anonymised mobile phone location data and satellite data to improve 
public health. In academia, an active player is the Harvard Humanitarian Initiative, with which Data-
Pop Alliance and some of the authors of this report are affiliated.  

Among private sector entities, the activity of Orange Group is notable. As part of its corporate 
social responsibility programme, it made anonymised mobile phone datasets from Ivory Coast and 
Senegal available to allow research groups worldwide to explore how Big Data could tackle global 
development challenges.28 Among the hundreds of submissions, a few were specifically related to 
resilience—including identifying areas vulnerable to floods and to monitor call behaviour during 
floods,29 detecting anomalies in human mobility patterns,30 and linking changes in collective mobile 
data to emerging crises.31 

Similarly, broadband and telecommunications provider Telefónica has also been contributing to 
research in this area. In partnership with the Universidad Politécnica de Madrid, the firm gained 
insight into the effects of floods in the Mexican state of Tabasco in 2009 by analysing, after the fact, 
millions of mobile phone datasets.32 The study enabled identification of the most affected areas, 
provided knowledge on the size and behaviour of affected 
populations, and highlighted the mismatch between the 
population’s awareness of risk and civil awareness-raising 
activities. 

Despite some promising results, these efforts to leverage 
technology for global development have revealed challenges 
and lessons learned – notably in the fields of information and 
communication technologies for development 33  and 
participatory geographic information systems. 34  Such efforts 
have highlighted a number of political, economic, scientific, and 
technological issues that prevent the smooth transfer of 
technologies to alleviate poverty. As Toyama35 notes, ‘Technology – no matter how well designed – 
is only a magnifier of human intent and capacity. It is not a substitute.’ Solutions developed by the 
richest countries or international NGOs often fail – either because of the gap between design and 
reality36 or because the least developed countries and regions do not have the resources to collect 
and analyse data or to leverage local communities to use the data that exists. 

1.5 The Uk-funded case studies and pilot projects 

In addition to existing research, this report draws on 11 case studies and pilot projects 
commissioned by DfID with NERC and ESRC to explore Big Data for resilience; see Box 2. The 
case studies highlight the extent to which Big Data approaches to increasing resilience are still in 
early stages and face unusual hurdles. Even basic uses of mobile phone data records, for example, 
require a great deal of effort to acquire and analyse the data. These concerns were echoed at a 
workshop DfID held to inform this report in London on June 5, 2015. Sections 2 and 3 draw on 
feedback from the case studies and the workshop, which also informs this report’s final 
recommendations. 
  

‘Technology – no matter 
how well designed – is only 
a magnifier of human intent 

and capacity. It is not a 
substitute.’ 

—Kentaro Toyama 
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Box 2. Overview of Case Studies 

The field of Big Data for resilience is rapidly evolving. In the 11 case studies and pilot projects 
DfID with NERC and ESRC commissioned to explore the links between Big Data and resilience, 
four themes emerged. 

Theme 1: Building resilience through crowdsourcing 

A number of papers investigate the use of crowdsourcing to characterise hazards, identify localised 
needs, and diagnose disaster response on the ground. Social media and text messages are key tools. 
The case studies in this group document both rich promise and significant limitations in use of 
crowdsourcing.  

1. Early Flood Detection for Rapid Humanitarian Response: Harnessing Big Data from Near 
Real-Time Satellite and Twitter Signals (Jongman et al.) 

2. Increasing Resilience to Natural Hazards Through Crowd-Sourcing in St. Vincent and the 
Grenadines (Mee & Duncan) 

3. Inclusiveness in Crowdsourced Disaster Response (INCROWD) (Roth & Luczak-Roesch) 

Theme 2: Using mobile network data to understand actions, behaviours, and attitudes  

In developing countries, observational data is often lacking, and mobile phone usage is growing 
rapidly. Mobile networks have the potential to generate a clear picture of actions and contexts on 
the ground. The potential and challenges emerge in the following case studies: 

4. Mobile Network Data and Climate Resilience: Analysis of Cyclone Mahasen in Bangladesh 
Using De-Identified Data of Five Million Phones in the Grameen phone Network 
(Bengtsson et al.) 

5. Big Data for Flood Resilience in East Africa (Iliffe et al.) 
6. Leveraging Mobile Network Big Data for Disaster Risk Reduction: Minimizing Harms and 

Facilitating Access (Samarajiva & Lokanathan) 

Theme 3: Improved statistical methods for defining disaster risk 

A critical area of innovation is the identification of statistical tools for analysing the vast quantities 
of information available. Drawing on lessons from other fields, the commissioned papers highlight 
promising statistical techniques for improving the relevance and accuracy of data in support of 
resilience and reducing the computational needs and time required for Big Data analysis. These 
improvements will be especially crucial for near real-time analysis in developing countries. 

7. Landslide Susceptibility Mapping in Data-Poor Environments (Cheng) 

8. Big Data for Tsunami Hazard Warnings in India (Guillas) 

Theme 4: Big Data and communication technologies for awareness raising and disaster 
relief and recovery 

Big Data approaches, especially use of mobile phones, offer unique opportunities for 
disseminating information and raising risk awareness at scale, as the papers in this area highlight. 

9. Mobile-Based Disaster Risk Monitoring System: An Innovative Approach to Enhance 
Community-Led Disaster Preparedness in Uganda (Kiragga et al.) 

10. The Potential of Big Data to Encourage Long-Term and Preventative Disaster Risk 
Reduction Behaviours: Evidence from Cochabamba, Bolivia (Sou) 

11. Big Data in Disease Disaster Management in Developing Countries: A Mobile Phone Data 
Use Framework (Cinnamon et al.) 
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2. Opportunities and potential of Big Data for resilience  
 
This section explores applications of Big Data to provide information about the variables that 
constitute the hazard equation: hazard risks plus the exposure and vulnerability of communities. It 
next reviews an area in which development and grassroots communities have already made 
important strides: using Big Data to detect and respond to single events. Turning to longer time 
scales, we show how information on exposure, vulnerability, and disaster impact can be used to 
build resilience over time. Finally, this section emphasizes the importance of social learning and the 
potential of Big Data for strengthening democracy and enhancing communities’ capacity to act.  

2.1 Monitoring hazards 

Effective monitoring is an important foundation for improved management of disasters. Many 
aspects of hazard monitoring, particularly in the geosciences, are already heavily driven by Big Data 
sources such as remote sensing. The added value of new Big Data techniques in this area breaks 
down into advances that improve existing systems and advances that use new sources of data to 
monitor risks. 

Improving existing systems 

One of the prime opportunities in using Big Data to monitor hazards lies in advancing geoscience 
risk measurement systems. In the past decade, increased availability of high-resolution satellite 
sensors has contributed to great improvements in hazard detection and mapping. For example, data 
collected from the NASA Gravity Recovery and Climate Experiment satellites launched in 2002, 
enable effective monitoring of groundwater depletion. New sensors from the NASA Soil Moisture 
Active Passive mission will soon provide soil moisture data with unprecedented accuracy, resolution, 
and coverage. Jointly, these data enable analysts to detect loss of resilience in dryland ecosystems, 
monitor drought, and estimate yields in data-sparse and food-insecure regions (see Figure 2).  

Figure 2. Three-dimensional model of the Groundwater (left) and Google Earth 
hydrography map (right) of the Al Assi (Orontes) river basin in Lebanon 

             
Source: UNESCO, “Science diplomacy and transboundary water management – The Orontes River case”, 2015 

Another opportunity lies in expanding the use of Big Data to enhance early warning systems. The 
commissioned case study ‘Big Data for Tsunami Hazard Warnings in India’ (Case study 8 above) 
presents a hazard model for assessing tsunami risk using satellite surface wave information and GPS 
observations. It finds that reasonably accurate estimates of inundation risk are calculable even in a 
data-poor environment like India during the 2004 Indian Ocean earthquake. However, the 
complexity of the necessary computations would make it difficult to use the technique on current 
data. Advances in technological infrastructure and capacity seem poised to radically expand the 
accuracy and usefulness of monitoring systems in coming years.  
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Using new sources of data to monitor risks 

New sources of Big Data can facilitate innovative solutions to compensate for the difficulties of 
hazard detection and mapping in data-scarce environments. For example, the US Geological Survey 
now integrates social media surveillance into its network of seismometers to improve tracking and 
real-time mapping of landslides and earthquakes. The case study ‘Early Flood Detection for Rapid 
Humanitarian Response: Harnessing Big Data from Near Real-Time Satellite and Twitter Signals’ 
(Case study 1 above) provides another example of how social media can be used to gather real-time 
images and descriptions of developing situations (see Figure 3).  

Figure 3. Schematic display of a typical Twitter count pattern leading up to a flood event 

Source: Jongman et al. “Early Flood Detection for Rapid Humanitarian Response”, 2015 

In the Philippines and Pakistan, two sources of near real-time data, the Global Flood Detection 
System and the Twitter-based analytics platform Floodtags, were combined to support disaster 
monitoring. The approach worked well in unexpected and contentious flood events, such as 
intentional breaching of flood defences, as well as in densely populated urban areas. Questions about 
processing of social media content, identification of critical thresholds, and sampling and 
distributional issues require answers before similar applications can deliver results. The success of 
similar schemes may ultimately depend on working through local organizations to make people 
aware that their communications are being used to inform effective disaster response. 

Social network data need not be passively emitted to be useful. Crowdsourcing, or soliciting data 
from the public, is another key opportunity. The citizen science literature has demonstrated that 
certain types of scientific data can be reliably gathered by distributed networks of non-specialists. 
One of the UK-commissioned reports outlines how crowdsourced data has contributed to 
monitoring of volcano hazards (Case study 2 above). It shows how even a small number of 
dedicated users can bring large increases in understanding in data-scarce areas. Uganda’s use of 
uReport, the cell-phone based two-way governmental messaging system (Case study 9 above), 
provides another example. Ongoing efforts highlighted in the commissioned report on mobile-based 
disaster risk monitoring in Uganda demonstrate the potential for crowdsourced reporting of local 
hazard outcomes. 

Additional technologies currently in development that are likely to shape hazard monitoring during 
the next decade, though the uncertain nature of technological progress makes it difficult to tell how 
any of these technologies will play out. One of the most obvious changes are major advances in 
sensor networks. The accelerometers that detect motion in mobile phones can be used to get very 
rapid data on earthquake occurrence and intensity. Hand water pumps fitted with sensors that report 
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on use can generate a cascade of potential hydrological data for hazard monitoring. In the longer 
run, embedding sensors into entire cities, as in India’s 100 Smart Cities project, will provide novel 
opportunities to monitor hazards in real time, particularly when they are combined with existing 
monitoring systems. 

2.2 Assessing exposure and vulnerability to hazards 

Detailed information about the exposure of communities and assets to potential hazards is essential 
to estimating risks and monitoring resilience. Big Data has tremendous potential to identify the 
exposure and vulnerability of communities and countries, providing information on, for example, 
the presence of infrastructure, population density, and the socioeconomic status of the population. 
Large returns could be realized, even in the short term, by investing in Big Data applications and 
scaling them up. Furthermore, through traditional methods of mapping hazard exposure typically 
require vast quantities of geo-environmental data and inventories of past data, many of the methods 
described below show promise in data-poor environments where historical records may not exist 
(see Box 3). 

In recent years, very different approaches have made great strides in mapping settlements, buildings, 
and infrastructure at risk, especially in settings with insufficient capacity to survey the land 
systematically. First, new satellite imagery products available at relatively low or no cost have spurred 
the development of new algorithms to map urban extent and building types. Second, communities 
around the globe have used crowdsourcing approaches to create detailed maps for vulnerability 
assessment. Finally, call detail records – phone meta-data – have also been used to assess exposure 
and diagnose disaster preparedness. 
 

New satellite imagery 
 

Box 3. Using Data Mining to Create Landslide Exposure Maps in Data-Poor Contexts 

Reducing the risk and impact of landslides is a top resilience priority for many developing 
countries. Producing susceptibility maps typically requires a great deal of current and historical 
data – which few developing countries have. The UK-commissioned study ‘Landslide 
Susceptibility Mapping in Data-Poor Environments’ describes how a data-mining algorithm called 
Random Forest can be used to produce landslide susceptibility maps in contexts with poor access 
to data. Focusing on Piedmont, in Northwest Italy – where a comprehensive landslide inventory 
and full geo-environmental data are available as benchmarks – the paper shows that data mining 
can successfully predict landslide susceptibility, producing risk maps at up to 75% accuracy. 
Addition of landslide data would bring significant improvement.   

Previous approaches to remote sensing, which used coarse data and relied on physical models built 
and interpreted by experts, rarely allowed global coverage, frequent updates, or the fusion of data 
from multiple platforms.37 Improvements in the velocity, volume, and variety of satellite imagery 
data, along with automated methods for processing and aggregating data, have been a boon for 
exposure mapping. In the last decade, new land cover global layers including GlobCover38 and 
MODIS Land Cover Type39 have classified urban areas with about 96% accuracy.40 Together with 
global population layers, these tools are well suited for systematic risk analysis in data-poor 
countries, though only at large spatial scales.  

Even more significant in scope and ambition are two projects that will provide worldwide mapping 
with unprecedented spatial detail: the Global Human Settlement Layer (GHSL) by the European 
Union’s Joint Research Centre and the Global Urban Footprint (GUF) by the German Aerospace 
Center (see Figure 4).  
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Figure 4. The city of Brasilia from the current Global Human Settlement Layer, using a 
combination of images from different satellites with resolution ranging from 0.5 to 10 m. 

 

Right: the presence of buildings GHSL layer represented at 1:50K scale (the dark green shows all the input 
scenes used); Left: a zoom into the city center showing the average building size at 1:10K scale.  

Source: Pesaresi et al., 2013 

Both projects are in the testing phase, yet recent validation shows them to be reliable.41 Both provide 
unprecedented ability to detect small and informal settlements. The GHSL will likely be the more 
flexible and detailed project, as it can quickly store, retrieve, and integrate large amounts of 
heterogeneous image data. It will provide fine-grained data on building sizes, types, and numbers.42 
Its very high-resolution imagery will even produce maps that show how vulnerable buildings are 
based on such factors as roof quality and building age.  

Data at this level of detail is costly. As part of the Group on Earth Observation (see Box 7), GHSL 
will be adapted for use in developing countries. Users will be able to model population distribution, 
plan censuses, map poverty and slums, model urban climate change, and much more. The success of 
this ambitious project requires commitment from funders and commercial satellite data companies 
to make the very high-resolution imagery available and to train development professionals to use 
these new fine-scaled maps. 

Crowdsourced mapping 

Crowdsourced or participatory mapping is the second important breakthrough in exposure mapping. 
Crowdsourced projects enlist volunteers to map geographic information, based on local knowledge, 
imagery data, social media including spatial information (in text, videos, photos), or a combination 
of these. The most well-known initiative is OpenStreetMap (OSM). Created in 2004, OSM is now a 
globally distributed organization – counting 1.5 million registered users and local groups in over 80 
countries – working to create a common open digital map of the world.43 OSM consists of a single 
database that users edit remotely, digitizing the presence of roads, buildings, and so on. OSM users 
self-organize into sub-groups that focus on geographic areas. Currently, OSM coverage is uneven, 
but its quality is high in comparison to official data.44  
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OSM data is useful for both hazard exposure and humanitarian relief efforts. The Humanitarian 
OpenStreetMap Team (HOT), a sub-branch of OSM, focuses on disaster applications. HOT quickly 
provided relief organizations with detailed maps after the 2010 earthquake in Haiti, Typhoon 
Yolanda in 2014, and the 2015 earthquake in Nepal. HOT’s Missing Maps Project is mapping the 
most vulnerable places in the developing world to facilitate better response to future crises45 (see 
Figure 5).  

Figure 5. Comparison of OpenStreetMap coverage of Kathmandu, before and after the 2015 
Nepal earthquake and the efforts of the Humanitarian OpenStreetMap Team 

 
Source: Humanitarian OpenStreetMap Team website, accessed August 2015. 

 

Other HOT projects map specific vulnerabilities. For example, a HOT team in Tanzania recently 
started mapping infrastructure vulnerable to flooding in Dar es Salaam.46 Since 2011, HOT in 
Indonesia has been collecting exposure data to feed into open-source risk modelling software.47  

Crowdsourced mapping provides local exposure information that governments may not have. 
However, little is known about how coordination works in crowdsourced projects like OSM, who 
participates, and how the organization could be improved to increase accuracy, consistency, and 
coverage.48 More thorough evaluation of crowdsourced mapping projects can identify ways to scale 
up these initiatives and make them more useful. 

Call detail records 

To add to population maps like LandScan, which is based on census data, data scientists have 
experimented with using call detail records (CDRs) from telecom operators to estimate population 
densities,49 movements of people,50 and socioeconomic status. CDRs, or call meta-data, are available 
at the level of the individual or of the tower; they provide information on the number of calls 
between towers and on airtime purchases. With mobile-phone penetration rates greater than 90% in 
developing countries 51, CDRs could provide extremely fine-grained and dynamic data on large 
populations.  

CDRs have many potential applications for exposure and vulnerability assessment, some of which 
have been well tested, while others have not yet been tried. CDRs were used to study population 
dynamics in Europe, Haiti, and New York.52 The information available, although it has not yet been 
applied in real decision-making contexts, could be useful for designing evacuation routes, providing 
exposure maps that are sensitive to regular population movements such as daily or seasonal 



 

16	

migrations, evaluating the effectiveness of early warning systems (see Box 4), or assessing risks of 
disease outbreaks following a disaster.53 A number of projects (in the UK,54 Ivory Coast,55 Rwanda,56 
and Latin America57) have shown that measures of socioeconomic status can be derived by coupling 
CDRs with census or survey data to determine the relationship between calling patterns and wealth 
or income. CDRs can then be used to interpolate between censuses and extrapolate to populations 
that are not covered by official surveys, such as informal settlements.  
 

Box 4. Auditing Early Warning Programmes With CDR-Based Maps of Population 
Movement 

In one of the case studies commissioned for this report, a team led by Flowminder examined 
information collected from de-identified data of five million phones in the Grameen phone 
network in the wake of a cyclone in Barisal and Chittagong (Case study 4 above). The data 
included changes in call frequency, SIM movements within the network, and mobile recharges. 
Findings suggest that spikes in call frequency precede users’ exposure to the storm, suggesting 
increased communication as communities prepare to be impacted. Similarly, interruptions in 
network function can be used to infer damage to infrastructure or power grids as towers go off 
line. Interestingly, despite early warnings, the data show a lack of mass displacement from coastal 
areas in the weeks and days preceding the cyclone. The case study therefore showcases how 
mobile network data can be used to audit the performance of early warning programmes. As 
mobile phone use proliferates in developing countries, such methods may help with assessing the 
impacts of extreme events and evaluating the effectiveness of disaster response. However, another 
of the commissioned case studies58 stresses that telecom information is proprietary and subject to 
strict rules (Case study 5 above), so that relationships between researchers and network providers 
must be carefully managed and negotiated. 

 

Several potentially powerful applications of CDRs to vulnerability assessment should be tested in the 
years to come (see Box 6). In particular, CDRs can be used to assess the features of social networks, 
which are vital when disaster strikes.59 Quantitative studies based on CDRs confirm the importance 
of social networks: Rwandans with on-going economic relationships were more likely to receive 
remittances to help them after a disaster, and inhabitants of Port-au-Prince were found to take 
refuge with family members in other regions of Haiti following the 2010 earthquake. CDRs have 
been used to map friendship networks at the scale of whole societies.60 This capacity could be 
leveraged to create measures of social capital and of the economic or social marginalization of 
specific communities. CDR population mobility data could also be used to infer the size and stability 
of market hubs and the robustness of transportation and service infrastructures. 

Advances in the use of satellite imagery, crowdsourced maps, and CDRs allow analysts to map 
informal settlements and track poverty; they could easily be used to measure social and economic 
marginalization. However, these data do not capture some aspects of vulnerability, such as 
individuals’ age, education, and health. Other aspects, such as access to water and electricity or the 
size and health of livestock, have not yet been tackled.  

2.3 Disaster response: Early warning, situational awareness, and immediate impacts 

The use of Big Data to respond to natural hazards depends on who has access to the data and tools 
and how effectively the analysis can inform decision making. The three parts of disaster response 
covered in the literature and the UK-commissioned case studies are early warning, situational 
awareness, and immediate impacts. 
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Early warning 

In the wake of the International Decade for Natural Disaster Reduction (1990–1999) and 
subsequent international efforts, effective institutions have been created to coordinate the collection, 
analysis, and sharing of weather data to predict floods, storms, and droughts – though obviously 
major gaps still exist, subject to local political and technological capacities. The telecommunications 
systems in several of the world’s least developed countries require upgrade, and progress can still be 
made in the lead-time of warnings, especially for floods and storm surges in coastal areas. Still, these 
institutions are effective at channelling data and at forecasting and detecting many climate-induced 
hazards, and they continue to improve.61  

Situational awareness 

As discussed above, crisis detection increasingly draws on digital social data. For example, the US 
Geological Survey monitors tweets worldwide to detect earthquakes and issue alerts.62 The Billion 
Prices Project at the Massachusetts Institute of Technology (MIT) monitors prices posted online to 
detect inflation trends and monitor food security.63In public health, digital disease information is 
being used to alert individuals and governments to possible outbreaks (see Box 6). Lessons from the 
11 commissioned case studies show what is required in order to capitalize on these opportunities in 
an emergency: technical capacity to design dissemination platforms and tools; adequate framing 
delivery mechanisms; and, above all, clear, standardized guidelines for the dissemination of disaster-
related information. 

Immediate impacts 

Multiple sources of data can help with timely assessment of the effects of a disaster.  

Remote sensing in particular serves three main functions:64(a) providing large-area reconnaissance to 
enhance situational awareness and map damage; (b) assessing damage to properties critical for 
livelihoods and stability, such as homes and businesses; and (c) determining impact on critical 
infrastructures including roads, energy grids, and water pipes. In one project, remote sensing 
provided positive preliminary results in estimating the impact of several types of disasters by means 
of specific applications such as the use of "structured light" laser scanning devices for generating 3D 
spatial models of damaged areas. 65  Satellite imagery has enabled timely post-hurricane damage 
assessment of tropical forests66 and accurate damage assessment after a tsunami.67 Relatively high 
accuracy in the detection of damage after earthquakes was reported in Haiti68 and Japan.69 Novel 
methods for automated processing are being developed.70 

Crowdsourced approaches can complement ground and remote sensing data to reach a more fine-
grained and dynamic understanding of impacts. Due to the increasing availability of satellite imagery 
from government sources as well as images from drones, crowd-based micro-tasking, a crowd-based 
approach that break the analysis process down into smaller steps that can be carried out by a 
network of simultaneous contributors – often volunteers – provide promising ways to identify 
damages, has become a promising way to identify damages.71 In the Russian wildfires of 2010, a 
group of digital volunteers used social media to coordinate volunteer firefighters on the ground and 
provide relief assistance.72 When they are open, decentralized, and interactive, Big Data and digital 
technologies can improve the ability of individuals affected by disasters to mobilize their social 
networks and get help from the ‘crowd’ of first responders. They can also help to coordinate the 
efforts of relief organizations. Indeed, health workers in the Haiti earthquake spontaneously 
attempted to coordinate their activities on Twitter, thereby revealing a latent demand for such an 
information platform.73 One of the UK-commissioned case studies showcases how social media data 
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facilitates a grassroots approach to digital humanitarianism (Case study 3 above) by giving local 
actors the ability to voice their needs.74 

 

Box 5. Leveraging Mobile Phone Data to Infer Post-Disaster Movements  

Data from mobile phones constitute a precious source of information to infer population mobility 
after disasters. 

• Tracking the position of mobile phones in Haiti before and after the 2010 earthquake allowed 
experts to estimate population displacement and helped build an effective real-time monitoring 
system to track the outbreak of infectious diseases. 75 

• Scholars used CDR to infer internal migration patterns in Rwanda76, determining a baseline for 
mobility that may be useful to assess after a disaster. 77  This baseline may also support 
policymakers in defining where to invest to strengthen local infrastructures.  

• CDRs used to understand human behaviour during the 2009 floods in Tabasco, Mexico, 
proved to be representative of the population when compared with official census data78;; 
furthermore, the data offered interesting insights on the impact of the disaster and on the 
citizens’ awareness. 79. 

• After a 2011 earthquake, Statistics New Zealand mapped population movements by tracking 
text messages and voice calls.80  The experiment showed ‘which geographical areas attract high 
percentages of people, patterns of return movements over time, and flows of non-residents 
into the emergency zone’. However, it did not assist in ‘verifying residential areas people leave 
from, which areas people relocate to following an event, or the actual number of people who 
relocate, temporarily or permanently’.  

• More recently, Flowminder used a similar approach to study population movements in Nepal 
in the aftermath of the April 2015 earthquake (see Figure 6). 
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Figure 6. Post-earthquake population movement in Nepal 

 
Source: Flowminder, 2015 

 

Box 6. The Possibilities and Limitations of Digital Disease Detection 

Digital platforms such as HealthMap and the Global Public Health Intelligence Network have 
shown promise in detecting disease outbreaks. These platforms mine disparate web sources, using 
advanced natural language processing tools, to alert users of possible outbreaks. Such systems are 
credited with helping to detect outbreaks of severe acute respiratory syndrome (SARS) in 
November 2002. Some systems look for keywords in social media and search engine entries. For 
example, Google’s Flu Trends, launched in 2008, initially garnered much attention for its 
predictive power. Although research has demonstrated a correlation between search queries and 
the number of physician visits related to flu-like symptoms in a given week, this approach has 
limitations.81 For instance, Google Flu Trends does a much better job of predicting nonspecific 
respiratory illness, like a bad colds or SARS, than actual influenza. Another issue is confirmation 
bias: If the arrival of influenza is widely covered in the media, more people will search terms 
related to the virus, not because they are sick but because they are more aware of the disease—
which was the case with Google Flu Trends. Thus, although digital social data has the potential to 
help detect public health crises, it is also subject to external factors that can lead to false positives – 
as is the case with most malfunction detection systems and forecasting models. 

 
  



 

20	

 

Big Data approaches can help coordinate social response in more structured ways as well. In a 
conflict-related example, the Nairobi-based NGO Sisi ni Amani sends text messaging to help resolve 
violent riots and human abuse in Kenya, using its over 30 million mobile phone subscribers to tap 
both pre-existing communities and groups recruited explicitly for this digital peace effort. Tangible 
work so far mostly has had to do with land disputes, which often lead to unrest in poor Kenyan 
communities. For example, in response to a land dispute in the Mulot-Narok region in October 
2011, Sisi ni Amani sent text messages to the individuals involved. One read, ‘We the people of 
Mulot shall resolve all boundary issues peacefully, for only with peace can we find lasting 
solutions...’. Texts like this one help to alleviate pressure and end regional clashes. Phones and 
existing networks spread the message deeply into the community at a relatively low cost. 

Furthermore, humanitarian organizations have pioneered new methods to assess impact during and 
immediately after disasters. Data from social media, for example, increased the accuracy of disaster 
impact assessment during the 2013 floods in Colorado.82 Geo-tagged tweets with pictures of flooded 
areas were combined with remote sensing imagery to optimize post-disaster reconnaissance. Recent 
experience in Indonesia also suggests that mining data from tweets can support emergency response 
by fine-tuning ground relief efforts.83 

2.4 Innovative approaches to assessing the vulnerability and resilience of natural 
systems 

Big Data can help monitor the resilience of both agricultural systems and natural ecosystems. 
Sustainable intensification of agriculture can make a significant contribution to resilience by 
mitigating climate change, the water crisis, extreme weather events, biodiversity loss, 
underemployment, inequality, and food crises. 

Scientists at the Consultative Group on International Agricultural Research have recently introduced 
the Global Intervention Decision Model to help improve agro-ecosystem interventions. 84  This 
model flexibly incorporates ecological, economic, and social data, as well as the qualitative insights 
of practitioners. In 2013, the model was applied to nine pilot projects ranging from an irrigation 
project in Ghana to the intensification of rain-fed agriculture in the Tana River Basin. The model 
informed practitioners’ views of project risks and told them what to measure. For example, it 
revealed the need for more information on ‘points of failure’ of the seed distribution network in 
Ghana. Evaluation of this model concludes that it should immediately be used in future 
interventions.85 The model is more powerful when social and environmental variables are taken into 
account over time and space rather than using instead of using averages. This is where Big Data – 
particularly satellite imagery that provides dynamic, high-resolution data on such vital factors as soil 
quality and water availability – can make a big difference.  

Big Data can also contribute to early-warning indicators for systems that are approaching a ‘tipping 
point’—a threshold beyond which the system takes on different behaviour as it moves swiftly to a 
different equilibrium86 (see Figure 7).  
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Figure 7. Diagram illustrating a tipping point, where a system shifts rapidly from one 
equilibrium state to another 

 
Source: Early Warning Signals Toolbox 

Examples of tipping points include grasslands turning into shrub land,87 groundwater tables shifting 
to a different equilibrium height,88 and the collapse of food webs. Such changes make systems less 
resilient, yet early detection is difficult because the changes are often sudden. However, patterns in 
the time series of certain variables can indicate that the system is approaching a critical transition.89 
Big Data methods, though they are still in development, have been applied with promising results to, 
for example, the sustainability of harvested fish stocks90 and the weakening of the El Niño weather 
pattern.91 The approach could also be used in drylands to monitor desertification.92 

2.5 Beyond single events: Big Data and general disaster resilience 

A resilient community can and must do more than face one discrete disaster. It learns from past 
disasters about its own vulnerabilities. It develops the capacity to detect and monitor emerging 
hazards and vulnerabilities – some of which may be caused by the recovery process itself – that may 
build up over time.93 It then acts to reduce its vulnerability by improving the management of natural 
systems, strengthening infrastructure, and strengthening social networks. These activities are 
fundamentally political, requiring that members of the public have three attributes: awareness, 
capacity for collective action, and ability to weigh in on decisions.  

This section describes ways in which Big Data can improve societal awareness of longer-term trends 
that create vulnerabilities and highlights how Big Data and digital communication platforms create 
opportunities for citizens to enhance their own agency and thereby build their resilience.  

Feedback throughout the disaster cycle  

The advances discussed above have obvious applications to disaster preparedness. Big Data can help 
decision makers to identify critical infrastructure that is at risk, define the optimal positioning of 
levees and shelters, or design robust evacuation routes. Furthermore, these new sources of data have 
great potentially to increase understanding of resilience and vulnerability. For example, they can help 
decision makers see whether exposure maps and vulnerability indicators predict the actual impacts 
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on the ground during the crisis. Were assumptions about population movements and evacuation 
strategies correct?  

Case studies that use Big Data to demonstrate the importance of social ties in a disaster94 show how 
analysis of social responses to disasters can improve future assessments. Beyond academic studies, 
information about exposure and vulnerability, followed by data on disaster response and impacts, 
should feed into the next cycle of risk assessment and preparedness to refine the field’s 
understanding of vulnerability and resilience.  

Societal learning about risks  

Resilience requires that all actors who make decisions – from households to ministries – be 
empowered to understand the risks they face and act on them.95 One of the four pillars of the UN’s 
International Strategy for Disaster Reduction approach to people-centred early-warning systems is 
understanding risk,96 because people tend to act on early warnings only if they already understand 
the risk. Social science research also shows that, in order to act together effectively, communities 
need a shared understanding of goals, risks, and options.97 At a minimum, then, building resilience 
requires all citizens to have access to data. Several global efforts aim to make large amounts of 
environmental and social data available to the public (see Box 7 and Figure 8).  
 

Box 7. Advancements in Open Data  

In the last decade, governments have made unprecedented commitments to ‘open data’ –- in, for 
example, the G8 Open Data Charter. They are now increasingly focusing on climate and disaster 
datasets. 

• Particularly important is GFDRR’s Open Data for Resilience Initiative (OpenDRI)98, born out 
of the 2010 earthquake in Haiti. For the first time, private satellite imagery companies released 
data under an open license to help with disaster response. The satellite data enabled the 
successful deployment of volunteer mapping efforts. OpenDRI now helps governments 
streamline open data projects. Using an open-source application called Geonode, OpenDRI 
initiatives help local actors process their existing data, engage communities in mapping and 
curating data about their changing exposure to natural hazards, and catalyse a community of 
practitioners interested in developing risk communication tools and monitoring efforts. Open-
source risk communication software called InaSAFE facilitates risk analysis once the data is 
collated. 

• The Group on Earth Observation (GEO) – a partnership of 76 member countries; the 
European Commission; and 51 intergovernmental, international, and regional organizations – 
is working toward implementing the vision of the ‘digital Earth’ advanced by Al Gore in 1998. 
Currently, only about 1% of ecological data collected is accessible after publication. GEOSS, 
the GEO System of Systems, is a worldwide effort to connect existing spatial data 
infrastructures. GEOSS is designed to be highly dynamic, creating a framework for any 
community, government, or research team to integrate its open data and use the system to 
model projects. If a very wide range of actors learns how to operate with GEOSS, it can be 
expected to revolutionize the world of Big Data for earth system management.  

The presence of a framework does not ensure its use. Actors must have incentives to spend time 
curating datasets. Scientists, for example, would be more encouraged to participate if their 
professional advancement were based on citations for their datasets as well as for their papers. 
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Figure 8. Definition of ‘open data’ for the OpenDRI Field Guide 

 
Source: Open Data for Resilience Initiative Field Guide, 2014 

They also aim to facilitate the integration of these data for use in risk assessment. However, 
information alone is not sufficient. Communities must be able to make sense of the data. For that, 
they need analytical, organizational, and educational support.  

Collective action and accountability 

There can be no accountability without information. Big Data can strengthen communities’ 
resilience by improving the responsiveness of institutions at all stages of the disaster cycle. As 
Buchanan-Smith and Davies note,99 the most essential factors in the success of early warning and 
early response efforts are political will and institutional capacity. Before the ‘data revolution’, 
newspaper circulation was shown to be instrumental in making state governments more responsive 
to the needs of people affected by floods and droughts in India. 100 In an analysis of Internet 
penetration, Groshek 101  provides evidence that the Internet can strengthen democracy, while 
Miard 102  documents cases in which mobile phones seem to have helped citizens’ political 
mobilization. As information technologies spread, this efficacy is likely to increase, at least in 
relatively democratic countries. However, no quantitative research has yet studied the effect of 
digital technologies on accountability in the context of disaster management. 

Information enables collective action and empowers people to address the risks they face only in so 
far as they trust the sources of the information. In order to trust, people must know where the 
information comes from. Deliberate investment in making Big Data analytical tools transparent is 
therefore likely to pay off in increased disaster preparedness and resilience. The technical complexity 
of Big Data analytical tools could make the public feel that they represent yet another technocratic 
approach to development. However, the open and participatory nature of Big Data could increase 
the trustworthiness of data sources. In particular, Big Data can help people verify information issued 
by governments, which often manipulate data for political purposes.103 Little research has been done 
on how Big Data might affect people’s trust in hazard-related information outside of their personal 
networks. 
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3. Challenges in mobilizing Big Data for resilience 
A number of bottlenecks, gaps, and risks affect the feasibility or desirability of Big Data approaches 
to disaster resilience. Most are well-documented issues common to Big Data applications in 
development and humanitarian efforts.104 This section places these issues in the specific context of 
disaster resilience, pointing out mitigation strategies where possible. The literature review and case 
studies identify 5 main classes of issues: Constraints on data access and completeness; Analytical 
challenges to validity and replicability; Human and technological capacity gaps; Bottlenecks in 
coordination, communication, and self-organization; and Ethical and political risks, which are 
discussed in turn.  

3.1 Data access and completeness  

An obvious impediment to use of Big Data for resilience is access. A large share of Big Data 
‘crumbs’ remains in the hands – or rather, on the servers – of private corporations. The question of 
opening up CDRs, in particular, has received a lot of attention. During the Ebola crisis, calls to share 
CDRs with researchers and responders went unanswered105 (see Box 8). The fundamental question 
of legal ownership will become more urgent in the next few years.106 Private corporations protect 
their commercial interests and their reputations by refusing to share CDRs and similar data, despite 
their potential social value. Though some telecom operators have, like the Orange Group (see 
Section 1.4), opened up data in a controlled and time-bound manner, no comprehensive guidelines 
yet exist to facilitate such data sharing and ensure stability and predictability of access. A number of 
organizations are working on data sharing protocols – notably a joint project by the Leiden 
University, the World Economic Forum, and New York University’s GovLab.107 Whether, how, and 
when such efforts come to fruition remains to be seen.  

Box 8. Lessons from the Ebola Outbreak 

The Ebola outbreak took place in one of the most highly connected and densely populated 
regions of Africa. Researchers, respondents, and journalists argued that CDRs should be made 
available to trusted organizations to help with the response. Accurate information on population 
movements and interactions would have helped in monitoring the progress of the outbreak, 
predicting its spread, and facilitating interventions. However, despite the efforts of a large number 
of powerful actors, the governments of affected countries denied all requests. The main reason 
was that appropriate legal frameworks and institutional processes were not in place.108 Another 
factor was risks to the reputations and security of the governments and telecom operators 
involved. The underlying concern is that, in the absence of clear ethical guidelines, Big Data—at 
times referred as the “new oil”109, could lead to extractive or predatory behaviour on behalf of 
poorly regulated firms.110 

Accessing some social media data raises challenges too. Social media platforms offer access to part 
of their data through dedicated APIs (Application Program Interfaces) allowing the automated 
sharing and standardization of data, but many allow querying only of an archive of past messages. 
Only a few platforms offer public streaming with a real-time data feed. The most widely used source 
of social media data is Twitter,111 which provides a random sample of 1% of all postings that can be 
filtered by keyword or location. One way of increasing the quantity of data pulled from Twitter in a 
disaster is to increase the number of terms being searched by, for example, using a disaster 
lexicon.112 Another approach is to aggregate feeds from various sites to increase the volume of data 
being analysed.  
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A new platform called CrisisNet – an initiative of Ushahidi – provides a single stream of all crisis 
data from a wide variety of websites and social media platforms, restructuring the data into a single 
format. The UK-commissioned case study on crowdsourcing113 highlights limitations of social media 
data in developing countries, including skewed user bases and accessibility (Case study 3 above). 
Probably as a result of these limitations, only a handful of relief organizations have incorporated 
social media monitoring into their emergency response efforts.114  

Use of satellite imagery also comes with challenges. Partial coverage and contamination can impair 
the accuracy of damage mapping.115 Furthermore, though satellite data is usually less expensive than 
ground mapping, notably those provided for free by the United States National Space Agency 
(NASA)116, some remote sensing products can be costly. Public-private partnerships that take into 
account corporations’ financial constraints could help improve disaster response. Open access to 
databanks would enable testing of new methods, but private satellite companies have generally not 
been willing to provide free or low-cost data even after disasters, much less for testing. Another 
possible solution to the cost issue is use of new-generation nano-satellites and drones, which could 
provide cheaper aerial imagery especially useful for hazard monitoring. They can also help establish 
distributed wireless sensor networks that would lower the costs of monitoring hazards by radically 
reducing infrastructure, management, and physical connectivity requirements. But these UAVs 
although also raise ethical and privacy questions as discussed below.  

3.2 Analytical challenges to reliability, representativeness and replicabilty   

A related and well-established set of challenges pertains to the analysis of and via Big Data – both in 
terms of internal and external validities.117 Although strictly speaking, both kinds of validities refer to 
the ability to make and generalize causal claims, i.e. to the realm of prescriptive uses of Big Data, we 
expand their meaning and scope to include predictive and descriptive uses as well, i.e. the extent to 
which useful insights can be gleaned from these data.  

The basic question researchers must always answer is, ‘What does the data tell us?’ Big Data doesn’t 
magically answer this question; in fact, the answer is usually harder to find than in the case of 
controlled data collection. Tweets and text messages collected during or after an emergency may be 
deliberately misleading or false – as may any call for help. More often, the challenge is finding the 
‘signal’ in the ‘noise.’ Automated processes for dealing with large quantities of unstructured data try 
to answer the key question through careful extraction, verification, and classification of data.  

Some applications call upon volunteers to help classify data; fully automated systems are vastly faster 
and cheaper, but less flexible. Promising applications for testing the plausibility of claims in real 
time, based on human and machine computing, include Verily, developed by the Qatar Computing 
Research Institute.118 Another example is Artificial Intelligence for Disaster Response (AIDR).119 It 
uses volunteers to tag a small subset of the data in order to train a classifier, which then 
automatically processes the rest of the data. This system enables rapid scaling of data processing and 
makes it possible to reuse the classifier algorithm in similar future hazards. Though it has been 
deployed in only a few crises, AIDR has achieved high accuracy in its message classification rate.120 
Since each disaster is unique, systems that combine human and machine computing seem to offer 
the best results. 

Another main challenge to analysis is statistical bias, which comes in several forms. One big problem 
during disasters is selection bias resulting from attrition. For example, in the aftermath of an 
earthquake, more phone signals are likely to come from less affected areas than from areas that have 
been devastated. Assessing need based on the number of phone signals may send aid to the wrong 
places. Selection bias highlights the need to verify conclusions, most likely by correlating additional 
data sources, before acting.  

Another issue is sampling bias. Despite huge sample sizes, most Big Data sets are not representative. 
People’s decisions to use the technology in the first place are largely determined by characteristics 
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that affect the behaviours under study; Self-selection biases the sample. For example, factors such as 
age and income affect whether people use mobile phones. Using CDRs to study, say, mobility 
patterns after a disaster may give a misleading picture because the sample – mobile users – skews 
younger and richer than the general population121—although in some cases it may.122 These biases 
will tend to be greater with technologies that have lower penetration rates because there is then 
more room for highly skewed usage between different social groups.123 It is unclear, nonetheless, 
whether adoption patterns and trends of newer and future technologies across groups will mirror 
those observed in the past. Techniques to correct for sampling bias use standard statistical models 
and methods to control for mobile or internet penetration rates in, for example, a given area or age 
group (see Box 9).124 Refining such approaches requires calibrating new data with reliable target data 
from official or vetted sources. Even then, the ability to generalize the models and their results to 
other times and places is limited. 

Similarly, predictive modelling based on a large number of variables (known as features) may have a 
very high predictive power in a given setting, but their data requirements and changes in the 
relationships at play will make them hard to replicate over time and space.  

 

Box 9. Correcting Sampling Bias in CDR Data in Senegal 

Based on CDRs of more than 9 million mobile customers in Senegal, Letouzé and colleagues are 
currently developing a new methodology to correct for sampling bias in CDR datasets. They 
elaborate a CDR-based estimate of population density and demonstrate how this proxy can be 
applied to real-time mapping of flood vulnerability. 

Correction of sampling bias correction is necessary because factors such as income can affect 
whether and how much people use mobile phones. Combining the two main approaches to bias 
correction – a statistical model and machine-learning techniques – Letouzé and colleagues used 
such variables as mobile penetration rates to partially correct for the sampling bias. As data from 
reliable sources becomes available to calibrate with their model, they hope to improve the 
proportion of bias that can be corrected. 

An approach to misreporting and bias that has a relatively long history is ‘crowdseeding’, which 
combines the strength of crowdsourcing – the ability to quickly generate detailed real-time data – 
with traditional data gathering that relies on known sources and representative samples. One well-
known example is the Voix des Kivus project, which uses crowdseeding for real-time monitoring of 
conflict in the Congo (see Box 10). Issues of scalability aside, the project seems to have been a 
success. However, it generated discontent and mistrust among users125 because the data was not used 
to trigger responses to the events reported.  

Another challenge to analysis is the sheer complexity of human systems and the inherent difficulty 
of understanding them through models. One example is the role of social cohesion. Social networks 
are key determinants of resilience,126since safety nets are often provided by neighbours, families, and 
friends. A community’s social capital and leadership constitute one of its most effective means of 
adapting to change 127 and promoting disaster recovery. 128  However, understanding of the exact 
processes at play remains limited.129 Research needs to focus on using ‘social sensors,’ such as social 
media and mobile data, to measure social cohesion and then use the results to improve resilience.  
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Box 10. Example of the ‘Crowdseeding’ Approach 

The Voix des Kivus project employs crowdseeding for real-time monitoring of conflict in the 
Democratic Republic of the Congo.130 The pilot project selected three representatives in each of 
18 villages: the chief of the village, the head of the women’s association, and one person elected 
by the community. These informants were trained to report conflicts, health issues, and natural 
hazards by text on a weekly basis and were given free airtime to do so. After verifying the data 
through site visits, the researchers reported that data collection during the 18-month study period 
was satisfactory, although they found variation in villages’ propensity to report. The main 
challenge was access to electricity, which researchers resolved by distributing $25 solar chargers. 
Because of the context of conflict, the project included a protocol to protect sensitive information 
in order to avoid reprisals on reporters. However, such a protocol would not necessarily be robust 
in a larger-scale project. 

3.3 Human and technological capacity gaps  

A related well-established set of challenges pertains to local human and technological capacities. By 
and large, exposure to hazards, income, human capital and technological capacities tend to be 
correlated, both cross-sectionally and longitudinally. These relationships are not linear and 
straightforward, but apart from what may appear as exceptions—e.g. the oil-rich desert Gulf 
countries—places and people that are most exposed to sudden and slow onset natural hazards are 
typically those least able to leverage the opportunities of Big Data.  

Limited data transfer capabilities (i.e. low bandwidth), a problem often experienced in low-income 
countries, will evidently hinder the implementation of Big Data applications that rely on cloud 
computing. More generally few institutions in developing countries can afford the kinds of 
equipment on which Big Data analytics is performed by top global universities and corporations. 
Low income countries have only 1% of the world’s capacity to transmit data via Internet and phone 
capacities (see Figure 9). Progress is being made, however, as in the case of Africa, which has 
enjoyed a 20-fold increase in bandwidth between 2010 and 2015 thanks to submarine cables).131  

Another limitation is human capacities, perhaps best exemplified by the well-known dearth of skilled 
staff in statistical offices in developing countries—cause and effect of a brain drain—for which Big 
Data may seem like a distraction. Several proxies, including standard literacy rates around the world, 
point to the skills gap. A popular analytics software such as R may be entirely free and open source, 
but other barriers limit its adoption.  

This has obvious short-term effects—Big Data techniques will simply not be part of the potential 
toolkit of at-risk populations and their institutions. In the face of emergencies where time is of the 
essence, this simple fact may lead to decisions with detrimental long term effects: the parachuting or 
even distant engagement of external Big Data experts bypassing local structures.  

For Big Data to have a significant and lasting positive impact, investing in technical and above all 
human capacities will of course be key. In recent months, the notion of ‘data literacy’ has received 
increasing attention—a welcome development. But it must be clear that enhancing data literacy, a 
key requirement for building resilience through Big Data, is not reducible to training world-class 
computer science PhDs in developing countries.  
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Figure 9: Global telecommunication capacity by country income group 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Source: Hilbert, 2015 

3.3 Bottlenecks in coordination, communication, and self-organization 

The ‘decision gap’ – the disconnect between information and action – is one of the most detrimental 
features of the disaster cycle. A number of people-centred early-warning systems, defined as systems 
‘whose warnings are timely and understandable to those at risk (...) including guidance on how to act 
upon warnings,’ have emerged out of the Hyogo Framework.132  

However, even when hazard detection capacities are good, warnings do not reach all people at risk. 
Those that do may not be clear and may not address people’s concerns133  and most pressing 
needs.134 These issues must be addressed if Big Data is to contribute to bridging the decision gap.  

For example, a preliminary impact evaluation compared the work of the digital humanitarian 
network (DHN) in the 2010 earthquake in Haiti with the more traditional information system 
deployed by an on-the-ground NGO.135 It found that, although DHN had quicker deployment, it 
was actually less responsive to informational needs on the ground. The needs of local users were not 
always clear to digital volunteers who were processing Big Data online, and the distance between 
them impeded feedback. Feedback loops rarely remain active when data is being generated by 
different actors in different circumstances. Cross-communication between agencies and data 
platforms is a major challenge, although a number of standardized ways of classifying disasters have 
been developed for this purpose. Investing in open data initiatives is in itself an investment in 
disaster preparedness; a noteworthy initiative is the Humanitarian Data Exchange (HDX) 136 
established by the UN Office for the Coordination of Humanitarian Affairs in 2014 to make 
humanitarian data easy to find and analyse (see Figure 10).  
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Figure 10. The Humanitarian Data Exchange’s page for the Nepal Earthquake 

 
Source: Humanitarian Data Exchange homepage, accessed August 2015. 

The real potential for Big Data to help coordinate disaster response so far depends on advanced 
systems and intensive human resources to staff a hotline and process each message. Such systems 
are not replicable in developing countries. Improving the flow and coordination of data – and local 
capacity to use the data – are central to building resilience.  

Beyond issues of coordination and capacity, the process by which information leads to action at the 
individual or group level is highly complex. For example, when considering a complex issue like 
climate change, individuals tend to rely on their immediate personal experience – today’s 
temperature – rather than the latest report on global atmospheric trends.137 Enhancing people’s 
capacity to relate their personal experiences of, for example, above-average heat with the effects of 
climate change has been shown to improve their awareness of and concern about climate change.138 
Whether and how Big Data can help is unclear. However, visualization – a technique that can be 
facilitated by, for example, a satellite-generated map – is a powerful communication tool that may 
help people relate their experiences to global trends.  

Decades of research in the cognitive and social sciences have shown that, even when they have full 
information about and understanding of risks, individuals may make decisions that seem irrational to 
external observers, especially in contexts of high uncertainty and complexity.139 Patt and Schröter140 
provide the example of a failed flood resettlement programme in Mozambique. Policymakers 
believed that the farmers’ flood losses outweighed the benefits of living in a fertile river bed, but the 
farmers themselves disagreed.  

Many studies point to the critical importance of nurturing active relationships between information 
providers and the people who use the information.141 Behavioural and cognitive research shows that 
people can understand risks much better when quantitative information is presented in interactive 
simulations attuned to their mental models and preferences. 142  Fusing crowdsourced data with 
traditional data, as in the crowdseeding method (see Box 11), offers an opportunity to build 
knowledge and exchange networks rather than providing information products. For example, the 
Grameen Foundation Application Laboratories built a network of ‘community knowledge workers’ 
across Uganda143 who collect agricultural information through phone surveys and share the results 
with farmers in their community.  
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Knowledge networks may be ill-suited to contexts where the effects of poverty strain people’s ability 
and energy to engage in deliberative thinking.144 Furthermore, they are sustainable only when they 
are formalized around a small set of people who can propagate the practices over time, 145  so 
scalability is a challenge. Experimentation, future evaluation, and tailoring to local conditions by 
local actors are necessary to build appropriate structures. Still, the success of OpenStreetMap and 
Ushahidi demonstrates that local communities have the capacity to produce knowledge for disaster 
resilience.  

Incorporating knowledge networks into open Big Data mapping initiatives like GEOSS and 
OpenDRI (see Box 8) offers huge potential for resilience building. The frontier in this area is to 
create open software that not only collects and maps crowdsourced information but also assimilates 
environmental data and climate forecasts to support participatory risk analyses and generate concrete 
options. Any projects in this area must create strong relationships among all actors in the knowledge 
system. Vigorous evaluation of knowledge systems and open data projects would allow for rapid 
development and learning about what works.  

One of this report’s case studies systematically reviews the promises and challenges of using mobile 
phone data during disease outbreaks in data-poor environments (Case study 11 above). 146 
Advantages included better situational knowledge and increased efficiency, consistency, and ease of 
communication. However, standardized protocols are needed to facilitate rapid release, collection, 
and processing of mobile data in an emergency. In addition, the community’s existing knowledge of 
disaster risks and its culturally accepted responses must be taken into account.  

The next generation of Big Data crisis management tools should be built around users’ needs and 
goals. Hughes147 describes participatory methods for the design of such tools in various contexts. In 
order to devise effective communication strategies, developers must take into account the cognitive 
barriers to understanding risk. 

3.4 Ethical and political risks  

Ethical concerns constitute one of the biggest challenges in developing the next generation of Big 
Data crisis tools. In recent years, for instance, the notion of ‘anonymised’ data has been torn to 
pieces; with sufficiently large connected datasets, whether from cell-phones 148  or credit card 
transactions149, re-identification is almost always possible. Critically, this development was hardly 
foreseeable a few years ago; by extension, it is nearly impossible to foresee future technological 
advances.   

Another risk is that some leaders could consider Big Data to be the perfect technical fix for all of the 
world’s problems, looking for a ‘30,000 feet view’ that ignores the critical need for local engagement 
and investment.150 Vague discussions about the ethical use of data, often reduced to ‘anonymisation’, 
overlook deeper ethical considerations that ought to shape the future of Big Data for resilience, 
especially in complex and volatile contexts. Arguments over core aspects of data use such as the 
"right to be forgotten" are still unsettled and ethical norms are evolving quickly, necessitating a 
cautious and ethically conscious approach. 

Building on the principles of the Menlo Report,151 Pham and Vinck152 and Letouzé and Vinck153 
outline key requirements for technology-enabled approaches and Big Data analytics.  

• Participation must be voluntary and should respect individual autonomy. People must be aware 
of the risks and benefits of sharing their information based on how it will be used, and they must 
have the right to withdraw their data; 

• Responsible organizations must actively weigh the risks and benefits of their data collection and 
analysis. They must put a high premium on validation, report potential biases, and prioritize 
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security over speed; 

• The needs of people without technology access are paramount; 

• Context must dictate the level of data protection necessary to prevent breach of confidentiality. 
In repressive environments, for example, protecting information and informants is a priority; 

Clearly, in the age of Big Data, meeting these requirements means overhauling current practices and 
frameworks. However, intermediate steps can be taken to enhance citizens’ awareness and persuade 
governments, NGOs, and corporations to engage on and invest in these issues. 

APIs could be part of the answer to some of these ethical concerns as well as to challenges with 
shared communication and interoperability standards. APIs provide an architecture for the 
interaction between, on the one side, a data source and, on the other, a programme that uses the 
data. They can structure the interactions among actors in the informational network –  from 
people’s tweets or text messages, through the various organizations that collect the information and 
use it to inform disaster preparedness or response, and back to the public, who choose how to act 
on the information. Agreed-upon standards of communication that, for example, protect data 
privacy, can be hard-coded into these APIs to govern data exchange at every point in the 
information supply chain. APIs are already widely used to coordinate data flows in the private 
sector. The next generation of Big Data tools in the humanitarian sector could be based on a shared 
set of APIs to address issues of data privacy, communication, and coordination.  

4. Toward a roadmap 

4.1 The state of the field 

The menu of options for data-driven resilience is expanding rapidly, and interest in using resilience 
as a policy framework is on the rise. At the same time, challenges are growing. The evidence base on 
Big Data for resilience is generally recent, based on incomplete information, and not embedded in 
well-structured programmes of discovery and evaluation. These circumstances make it difficult to 
arrive at firm answers to high-priority questions. However, they create opportunities to add 
dramatically to the knowledge base.  

The literature search and commissioned case studies lead to four conclusions about the current state 
of knowledge about Big Data for resilience. 

1. Big Data has demonstrated its value and is now a permanent feature of the data-for-
resilience landscape. 

1. Big Data has put new metrics into our toolkits. It has shown its ability to make possible the 
collection of data that otherwise would be completely out of reach.  

2. Big Data has made our metrics more valuable. It has shown its ability to dramatically reduce 
the time needed to collect data, to increase the spatial resolution of maps, and to target data 
more precisely at groups and questions of interest.  

3. Big Data has made our data systems more participatory. It has shown its ability to open data 
collection, interpretation, and use to a broad set of stakeholders.  

4. Big Data has made data systems more responsive. It has shown its ability to dramatically 
shrink the innovation cycle by leveraging rapidly changing technology that is grounded in a 
culture of continual reinvention. 

5. Advances in technological infrastructure and capacity seem poised to radically expand the 
accuracy and usefulness of monitoring systems in coming years. 



 

32	

6. None of these positive effects are universal or automatic. Not all efforts to deploy Big Data 
on behalf of improved resilience achieve all these benefits. Delivery on the promise requires 
careful attention to norm- and value-driven design and implementation along with adoption 
of good management practices. Still, the value proposition has clearly been demonstrated. 

2. The proven benefits of Big Data for resilience do not translate into a clear roadmap 
showing how to reap these benefits operationally and at scale.  

1. The literature review did not find a single study or project that addressed how to use Big 
Data for resilience operationally and at scale. The literature is dominated overwhelmingly by 
isolated experiments or pilots and highly general paeans.  

2. The literature is a direct reflection of the funding. Funders pay for rapid deployment of new 
approaches to new disasters and for specific applications in particular cases, but not generally 
for work aimed at the bigger picture. 

3. The literature and the pilot projects are overwhelmingly dominated by supply-driven or 
technology-driven questions. Few studies asked, “What information is needed for 
resilience?” and then looked for effective strategies to meet those needs. There is a clear 
need to re-imagine approaches to bridging the dispersed elements of the scientific 
community whose expertise is relevant and the practitioners seeking practical guidance on 
these questions from a demand-driven perspective. 

4. Studies identify bottlenecks and obstacles, but no one does anything about them. For 
example, studies frequently note that bandwidth and storage limits in developing countries 
limit the ability to achieve Big Data’s potential, but follow-up projects are far more likely to 
explore yet another new technology than to look for practical ways to overcome the 
bandwidth and storage limits. Similarly, efforts to address the high price of commercial 
satellite data are scattered, ad hoc, and ineffective. Another clear bottleneck concerns IT 
expertise – efforts to overcome limits are frequently undone by the common practice of 
newly trained personnel being hired away by commercial firms; there are experiments to 
work out incentive schemes to retain IT professional in the public sector, but they are not 
having impacts act scale. 

5. Public-private partnerships proliferate, but there is no progress on viable models to make 
them effective and transparent or to develop standards on protection and sharing of data. 

3. No organizational structures exist to bring together in a sustained manner the core 
stakeholders who need to guide the transition from ad hoc pilots to at-scale operations.  

1. The case studies reveal that many actors have a stake in Big Data for resilience. The most 
impressive projects have been based on time-consuming engagements of a subset of partners 
that are not scalable or on specific situations that are not replicable.  

2. A large number of key stakeholders have varying degrees of capability, authority, and 
incentive to make the transition to at-scale operations: commercial firms, scientists and 
experts, government agencies and bodies, standards and regulatory bodies, national and 
international NGOs, community organizations, and donors or investors, among others. To 
realize the potential of Big Data for resilience, these stakeholders need to come together as a 
community. Discussions on global partnerships or world forums 154  reflect a growing 
awareness of the need to bring this latent community to life and give it power. 

4. The current focus on narrow elements of the Big Data ecosystem ignores the strong 
complementarities that can emerge from a coordinated approach. 

Exploring the value of a single data technology, or even identifying the ‘best’ data technology, is 
not the path to effective use of Big Data for resilience. What will shape effective resilience 
strategies is combining emerging technologies into a data portfolio, as discussed below.  
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4.2 Specific recommendations 

This report’s recommendations fall into three broad areas: investments in Big Data technologies, 
investments in the communities that support and use these technologies, and investments in the 
future of the field.  

1. Invest in Big Data technologies 

Invest in basic forms of existing and proven applications  
The rapidly changing nature of this field means that many promising cutting-edge technologies have 
not been field-tested and may face difficulty in scale-up. This situation suggests the following 
recommendations: 

• Share early warning systems and risk maps with stakeholders. Academic groups and technology start-
ups have developed techniques to quickly acquire, process, and analyse Big Data about crises 
from the Internet and from satellite imagery. The level of development of these technologies 
ranges from proof-of-concept to well-tested. After being designed for human-centred 
usability, they should be put into the hands of those who need them for disaster 
preparedness. 

• Develop tools that use social media to raise awareness and spread information. Social media-based 
warning systems and risk maps, for example, have particularly high traction because they do 
not require local capacity for use, especially for open data sources like Twitter. Furthermore, 
the user base in developing countries is already expanding, thanks to growing web access and 
mobile phone adoption.  

• Use call data records to provide insight into population vulnerability. Processing times currently limit 
the ability to use CDRs in response to sudden-onset hazards. However, the use of CDRs in 
Rwanda (see Box 5)155 suggests a way to tap this new source of information: The internal 
migration patterns identified using CDRs provided a baseline measure that may be useful in 
future disaster prevention or post-disaster recovery. 

• Facilitate crowdsourcing. OpenStreetMap and similar efforts demonstrate the potential of 
combining human and machine computing. Crowdsourcing seems to work particularly well 
post-disaster; large gains can often be made with few users.   

Identify high value-add contexts 
Local technological and analytical capacities govern the feasibility of Big Data approaches. However, 
Big Data methods have great potential in data-poor areas, where they offer a huge improvement in 
the ability to observe and follow events. The key to progress is investing in areas where such 
improvement can be achieved most efficiently, as outlined in the following recommendations: 

• Identify the minimum infrastructure required for each technology. In the case of CDRs, for example, 
the existence of a phone network is not enough. Also necessary is the ability to either 
process data on site or quickly transfer it elsewhere. 

• Compare the outputs of traditional and Big Data approaches. The landslide susceptibility mapping 
project described in Box 3 is an example. Using data mining techniques to produce exposure 
maps in an area where historical data was readily available demonstrates the viability of using 
this method in data-poor contexts.  

• Invest in high value-add contexts, such as: 

• Social media, which can provide local reports and insights in data-poor regions  
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• Middle-income countries, which face the greatest increase in disaster risk and 
simultaneously are experiencing rapid growth in mobile and social media technology 

• Technologies that provide large returns with small numbers of early-adopting data 
volunteers or super-users 

Facilitate proper management and use of existing Big Data resources 
The sources and types of Big Data being used to analyse climate change and to foster resilience are 
expanding rapidly, creating high demand for data sharing among public and private institutions. 
However, the rights and interests of individuals and groups whose data are being shared must be 
protected, as recommended here: 

• Develop specific data protection and sharing guidelines. Legal concerns that prohibit data sharing are 
a major barrier to development. Pilot projects like the CDR-based population estimates in 
Senegal described in Box 9 often access data through ad hoc channels that end when the 
project does. Common, clear standards and guidelines could encourage companies to share 
data, knowing that their interests are protected. 

• Establish models and standing public-private partnerships for the rapid release of crisis data. To make Big 
Data available during an emergency, legal and political concerns must be dealt with ahead of 
time, and appropriate infrastructure must already be in place. The effectiveness of such 
arrangements is demonstrated by the Open Data for Resilience Initiative (see Box 7), which 
made private satellite imagery available to help with response to the 2010 earthquake in 
Haiti. 

• Facilitate the spread of best practices in gathering and using Big Data. For example, the UN’s 
International Strategy for Disaster Reduction includes a recommendation for ‘people-
centred’, rather than ‘top-down’ early warning systems. 156  As the 2014 Ebola outbreak 
demonstrated (see Box 8), governments cannot be relied on organise data collection or data 
sharing in a crisis. 

Shift to a ‘data portfolio’ approach rather than individual data project approach  
Newer technologies, like the CDRs and social media streams that dominate current research and 
applications, are more powerful when they are combined with traditional approaches, as in the case 
of crowdseeding (see Box 10). Selectively bringing in emerging devices such as advanced sensors 
and drones is likely to add even more value. In the absence of research and pilots that uncover the 
knowledge needed, the field should concentrate on establishing and testing portfolio approaches. At 
a minimum, an effective data portfolio would incorporate sensor networks, use both historical data 
and information from current or ongoing events, build operational linkages to traditional 
administrative data processes, and operationalize high-value recent technology such as CDRs. A 
portfolio approach would expand the existing focus on sudden-onset disasters to include slow-onset 
disasters and long-term trends in risk and vulnerability. The following recommendations can guide 
development of a portfolio approach to Big Data: 

• Use all existing sources of data across platforms. In a crisis, disaster relief and response efforts 
should tap additional easily available data sources. 

• Make use of complementarities between data with different strengths and weaknesses. 

• Establish and test sensor networks. Technologies that generate environmental, infrastructural, and 
behavioural data—such as the motion detectors in mobile phones, home environmental 
monitoring systems like Nest, and large-scale sensor networks like the ones being created in 
India’s 100 Smart Cities project—offer great promise as part of a larger data portfolio. 
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• Develop efficient ways to correct for bias. Patterns of adoption and use of such data sources as 
social media and mobile phones often produce selection or sampling bias. The case study on 
CDR-based population estimates in Senegal described in Box 9 shows that such bias can be 
corrected. 

2. Invest in Big Data communities 

Facilitate coordination and communication among stakeholders  
In a crisis, information is valuable only to the extent that it addresses the needs of affected 
populations, first responders, and relief organizations. To build long-term resilience, many more 
actors must be included in participatory design processes that democratize access to Big Data and 
make the information useful for societal learning. The following recommendations aim at facilitating 
coordination and communication: 

• Create new avenues and means of cooperation. Regional hubs could help to connect communities 
and planners across jurisdictions.157 Two UN Global Pulse labs have been established in 
Jakarta and Kampala and other organizations including Data-Pop Alliance are developing 
multi-partner and interdisciplinary Data Spaces in selected major cities of the Global South 
starting in Bogotá and Dakar. 

• Facilitate communication and exchange between affected communities. Particularly when they are 
affected by a disaster, communities need ways to receive services meant to help them, 
provide feedback on the effectiveness of those services, and identify resources suited to their 
circumstances.158 

• Promote coordination of common standards. Standards governing data format, documentation, and 
access are weakly enforced, largely due to low levels of capacity and mismatched incentives. 
Standards governing legal use of data would help avoid unnecessary obstacles to access and 
integration. 

Promote and incentivize private sector involvement  
The private sector could do much more to help leverage the power of Big Data for resilience. 
Private sector organizations should be encouraged to: 

• Connect to NGOs and international organizations. Private companies would have to invest time 
and energy in identifying the needs of non-profits, understanding their capabilities and 
constraints, and earning their trust. 

• Develop ways to target donations where they are needed. Several organizations have active initiatives 
in this area that could provide expertise. For example, GiveDirectly has a widely acclaimed 
and empirically tested cash transfer programme for mobile money. Post-disaster Big Data 
recovery efforts could use similar platforms. 

• Identify and support promising technology start-ups. Investments in Big Data for resilience can be a 
win-win situation. 

• Support or organize data challenges for development. The success of the Orange Group’s challenges 
in providing data for resilience efforts in developing countries show that such initiatives can 
help unite previously disconnected groups. 

Engage with public officials and civil society representatives to address privacy and other 
political and legal issues 
While the value of using personal data for resilience has been demonstrated, it is not currently 
possible to scale up any meaningful applications because of a range of obstacles that include 
measures to protect privacy, to limit security threats, to communicate risks meaningfully to the 
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public and to data holders, to provide means of redress in the event of breaches, to provide 
procedures over oversight and accountability to enable regulators to exercise due diligence in 
protecting the public welfare, for spreading proven technologies and mechanisms for protecting 
privacy, among others. For most of these things, knowledge of what to do is relatively robust, but 
there is much work to be done to put everything to use in a comprehensive policy framework that 
enables the power of private data to be unleashed in a manner that will not trigger a public backlash 
over concerns about privacy and security. Succeeding at this challenge requires bringing together 
expertise in data science, ethics, law, risk management, communications, and public policy.159 

To date, there has been significant progress within these separate communities elaborating elements 
of solutions at the blueprint level.  And there has been modest progress at working out higher-level 
architectures for how to combine such elements effectively.  But there has been very little deep 
engagement within national governments to roll out reforms based on these exercises.   

Spurring data literacy.  
Big Data for resilience should not be left to experts only; a major requirement is to enhance people’s 
willingness and ability to engage with and via Big Data to shape the future of the field. The urgent 
need for focusing on and investing in data literacy of various social agents and groups is now 
undisputed. The report160 of the UN Secretary-General’s Independent Expert Advisory Group on a 
Data Revolution for Sustainable Development (IEAG)161 published in the fall of 2014 mentioned 
“data literacy” 4 times and put forth “(a) proposal for a special investment to increase global data literacy”, 
advocating for the development of “an education program and promote new learning approaches to improve 
people’s, infomediaries’ and public servants’ data literacy” adding that “(s)pecial efforts should be made to reach 
people living in poverty through dedicated programmes”. Yet, as of now, the proposal has not been picked up. 

In recent months however, a coalition of stakeholders led by Data-Pop Alliance and PARIS21 have 
been developing a global education program to spur broad-based data literacy by tackling the 
methodological, technical, political, ethical dimensions at various levels of societies.  

Invest in the future of the field 

Facilitate knowledge sharing within the disaster response community and cycle  
Knowledge and expertise are scarce in the rapidly evolving field of Big Data for resilience. New 
understandings often arrive unevenly as individual communities use specific technologies to respond 
to disasters. This situation reveals a crucial need to facilitate feedback between, on the one hand, Big 
Data innovators and researchers and, on the other, stakeholders who prepare for and respond to 
disasters. Big Data researchers could take the following steps: 

• Identify and spread best practices. New findings could be spread through such familiar 
technologies as websites and email lists. 

• Conduct event ‘post-mortem’ analysis to evaluate specific approaches. For example, the Flowminder 
case study highlighted in Box 5 shows how Big Data can help to evaluate the effectiveness 
of disaster response and identify areas for improvement. 

• Identify practical stumbling blocks before disaster strikes. Specific technologies and specific 
contexts each have their own specific obstacles to implementation, from limited processing 
power and slow internet connections to weak or non-existent legal frameworks. 

• Reduce the gap between information product suppliers and users. As mentioned above, in the 2010 
earthquake in Haiti, the digital humanitarian volunteers who were processing Big Data online 
were not always aware of actual needs on the ground. 162 Effective feedback loops would 
enable quicker and more effective response. 
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Tap mobile phone data more fully and rapidly 
Mobile phones are the only kind of technology available to many people in developing countries. 
However, adoption of mobile technology is ad hoc, scattered, and slow. Investments in data 
infrastructure and fit-for-purpose handheld apps are needed.  

Synchronize Big Data sources  
Knowing where people are located is central to any disaster assessment. Off-the-shelf population 
distribution data, whether simple headcounts or disaggregated breakdowns, are seldom fit for the 
purpose. Disaster analysts therefore look to CDRs and social media data to improve demographic 
mapping. However, they often not able to obtain the data for use in resilience work because of 
privacy and legal concerns. If they are able to use the data, they seldom have the chance to combine 
the CDR and social media data with data from other sources. Significant investment is needed to 
build systems that integrate CDR and social media data to reduce the transaction cost problem for 
the end user.    
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