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Data-Pop Alliance

is a global coalition on Big Data
and developmentcreated by the Harvard

Humanitarian Initiative, MIT Media Lab, and

Overseas DevelopmentInstitute that brings
together researchers, experts, practitioners, and

activists to promote a people-centered Big
Data revolution through collaborative research,
capacity building, and community engagement.
As of February 2016, Flowminder Foundation

has joined Data-Pop Alliance as its
fourth Core Member.
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Motivations of the work:

BACKGROUND & CONTEXT
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* P. Deville, C. Linard, S. Martin, M. Gilbert, F. R. Stevens,
A. E. Gaughan, V. D. Blondel, and A.J. Tatem. (2014)
Dynamic population mappingusing mobile phone data.

e Zagheni & Weber (2015).

Demographicresearch with non-representative internet data.
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BACKGROUND & CONTEXT
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Orange Data for Development (D4D) Challenge 2014 dataset

* One year of coarse-grained mobility data at individual level for 146,352
randomly sampled users in Senegal in 2013.
* Only users meeting both the following criteria were included:

1. Users havinginteractionson morethan 75% of daysin the given period.
2. Users havinghad an average of less than 1000 interactions per week.

Agence Nationale de la Statistique et de la Demographie du Sénégal
(ANSD) official census

e 1/10th sam)o
t

le of the Recensement General de la Population et de I'Habitat,
de I'Agricu

ure et de I'Elevage (RGPHAE).

* The 2013 edition of the RGPHAE was conducted over the 21 day period
from November 19 to December 14.



BACKGROUND & CONTEXT
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Social and physical vulnerability to flooding

* Ongoing work of Data-Pop Alliance research affiliates Bessie Schwarz and Beth Tellman

[ datapopalliance.org/democratizing-big-data-to-address-climate-change-the-science-and-political-potential-of-google-earth-engine/
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GENERAL APPROACH
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Simple base regression

log(P) =a+ Blog(U) + €

* Coefficients are estimated using
a simple linear regression model.

e Adjusted R?=0.768

log(population)

log(callers)
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HIGHLIGHT #1 : EFFECT OF AGE
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What patterns of bias can we identify using census data?

11 12 13

log(population)

10

Relationship between [log] number of callers (CDR data)
and [log] actual population (Census data)
across age levels (mean by arrondissement)

red = younger mean age
green = older mean age

Relationship between residual and mean age
in each arrondissement,
with and population density (log) represented by dot size
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HIGHLIGHT #1 : EFFECT OF AGE
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* Including mean population age in the standard model significantly
improves the fit (R>=0.827 ; compared to 0.768 in the base model).

Intercept 10.644***

(0.393)

log(callers) 0.597**%*
(0.027)

mean population age -0.135%%*%
(0.021)

* The standard model tends to overestimate it in regions with older
population age structure, and vice versa.
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HIGHLIGHT #2 : DIFFERENCE-IN-DIFFERENCE
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How can we compare trends across time and place even without ground truth?
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Month of the year

Average number of cellphone users for the
arrondissements Grand Dakar and Parcelles
Assainies over the course of the year

Month of the year

Average number of cellphone users for the
arrondissements Grand Dakar and Dakar Plateau
over the course of the year



HIGHLIGHT #2 : DIFFERENCE-IN-DIFFERENCE
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How can we compare trends across time and place even without ground truth?

Ul = Bo + P1Gi + BT + B3GiT; + eit

« The differencein difference estimator 9 is equal to the estimate for
the parameter B. The estimate for B is 940.67 (s.e. =154.12) and is
highly significant.

* This is a large change in population size: based on the results form the
regression models estimated in the previous section, the change in
population size would be in the order of about 100 thousand people.



HIGHLIGHT #3 : PROJECTING DOWN TO LOWER ADMINISTRATIVE LEVELS
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Does having ground-truth for larger areas help us estimate for smaller areas?

Mean absolute percentage error Estimates of log(population) at...

(MAPE) ... arrondissement level ... département level ... région level
using ... arrondissement level 2.80%
coefficients ... département level 4.35% 1.90%
fitted at ...
... région level 7.21% 3.75% 1.51%

123 arrondissements 45 départements 14 régions



CONCLUSION & NEXT STEPS
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* Continue exploring sample bias with additional census variables
(education level, rural/urban, gender).

» Additional work on how CDRs can be used to improve indices of social
and physical vulnerability to flooding in Senegal.
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